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Abstract The Synergistic Image Reconstruction Framework (SIRF) is
a research tool for reconstructing data from multiple imaging modali-
ties, currently most prominently PET and MR. Included are acquisition
models, reconstruction algorithms, registration tools, and regularisa-
tion models. In this work, we demonstrate the capabilities added since
SIRF 2.0. PET/MR cardiac imaging results are presented with estima-
tion of respiratory motion from the MR data, and motion compensation
combined with various regularisation strategies used for both MR and
PET reconstruction. The use of SIRF to facilitate this work enabled a
range of techniques to be compared quickly and efficiently.

1 Introduction

Current trends in medical imaging continue to focus on the
increased use of multiple modalities for imaging. Different
properties of each modality can be combined together to
complement each other and increase diagnostic power. One
prominent example is simultaneous positron emission tomog-
raphy (PET) and magnetic resonance (MR), where the speed
and resolution of MR is able to improve upon the limitations
of PET imaging and provide quantitative functional imaging
with reduced imaging times and improved resolution.
As such, there is considerable interest in the development
and refining of algorithms to share information between the
previously independent images. This can be done subsequent
to image reconstruction [1], or preferably by combining the
modalities during the reconstruction process itself [2]. How-
ever, this is only feasible when used in combination with
motion estimation and correction strategies to prevent mis-
alignment. Research into such techniques requires consider-
able software infrastructure for reading and converting data,
modelling acquisitions, reconstructing images, registration,
etc. Medical imaging hardware vendors do often provide
such infrastructure, however, it is often cumbersome or im-
possible to modify the internal components of these software
required for such research. The purpose of the Synergistic
Image Reconstruction Framework (SIRF) is to provide an
open source software (OSS) tool to facilitate investigation

into such algorithms.
Other OSS packages for image reconstruction are available
and include: Gadgetron [3, 4] and the Berkeley Advanced
Reconstruction Toolbox (BART) [5], which reconstruct MR
data; the Software for Tomographic Image Reconstruction
(STIR) [6], NiftyPET [7] and Customizable and Advanced
Software for Tomographic Reconstruction (CASToR) [8]
which have varying support for PET, SPECT and CT; and
the Reconstruction Toolkit (RTK) [9], with CBCT, CT and in
the future SPECT support. However, none of these packages
support a diverse range of modalities, specifically combining
MR and tomographic imaging. We are therefore developing
SIRF [10–12] to address this gap.
SIRF development is led by the Collaborative Computational
Platform on Synergistic Reconstruction for Biomedical Imag-
ing CCP SyneRBI www.ccpsynerbi.ac.uk. SIRF uses
several of the above mentioned packages as “engines” and
integrates them into a consistent framework. The software
includes documentation on exporting scanner data; function-
ality for converting and reading the data from supported hard-
ware; modules for reading and writing acquisition data and
images; acquisition models and reconstruction algorithms
able to reconstruct images from acquisition data; models for
regularising image reconstructions, some of which are able to
model synergism between the modalities; and data process-
ing tools for registering images to account for gantry shifts
and patient motion. SIRF integrates with another OSS called
the Core Imaging Library (CIL) [13, 14], which provides
advanced optimisation and regularisation methods.
In this work, we demonstrate the currently implemented
motion estimation and compensation strategies, together with
examples of regularisation models in a cardiac PET/MR
application.
Please note that since the submission of the conference ab-
stract, SIRF 3.1 has been released [15]. In addition, some of
the results in these proceedings were published recently [11]
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as part of a Special Issue on Synergistic Image Reconstruc-
tion [16, 17].

2 Methods and results

To be able to do motion correction, the data are split into
several motion states, usually called “gates”. There are nu-
merous techniques for performing the motion correction, see
a recent review on strategies for PET-MR [18]. The most
common methods are the reconstruct-transform-add (RTA)
scheme [19, 20], in which correction is performed after recon-
struction, and the motion-compensated image reconstruction
(MCIR) scheme [21, 22], in which the motion is incorpo-
rated into the acquisition model, one for each gate. Both of
schemes need the motion to be known. One common way to
determine the required motion information is to reconstruct
motion resolved images (i.e., one for each gate) and then
estimate the spatial transformation between the gates using
image registration [19, 23, 24].
In the following, we present an example of the above-
described framework using an in vivo cardiac scan. A si-
multaneous PET/MR scan was performed on a patient 182
min after the injection of 341 MBq 18F-FDG. Data was ac-
quired for 3:18 min during free-breathing.

2.1 Respiratory motion estimation and correction
for cardiac MR

In this section, a demonstration is given of the estimation of
respiratory motion from a 3D non-Cartesian MR scan. The
motion information is then used in an MCIR to improve the
MR image quality. A new acquisition model was combined
with the iterative reconstruction schemes available in CIL to
ensure high image quality, even for highly undersampled data.
3D non-rigid motion fields are obtained using spline-based
image registration and then applied during image reconstruc-
tion to minimise respiratory motion artifacts.

2.1.1 Golden Radial Phase Encoding

Non-Cartesian MR sampling schemes are of great interest
for motion-estimation and motion-correction. Even if the
data are separated retrospectively into different motion gates
(e.g., different phases of the breathing cycle), the k-space
data are still well distributed in k-space covering both high
and low spatial frequencies. In addition, high image quality
can be achieved even from very few acquired k-space points
(i.e., high undersampling) utilising iterative image reconstruc-
tion schemes. Here, a golden radial phase encoding (GRPE)
sampling scheme was used [25, 26]. This is a 3D acquisi-
tion scheme which combines Cartesian frequency encoding
(i.e. along kx) with non-Cartesian sampling in the 2D phase-
encoding plane ky−kz. The MR acquisition used here was
a three-point Dixon scan (echo times: 1.2, 2.7 and 4.2 ms)
with a field-of-view of 400× 400× 400 mm and a spatial

resolution of 1.9 mm along foot-head and 3.2×3.2 mm in
the transverse plane. In the following, only the first echo was
used.
SIRF was extended to use the non-uniform fast Fourier trans-
form (NUFFT) which allowed for the transformation between
Cartesian image data and non-Cartesian k-space data.

Figure 1: End-expiratory (end-exp) and end-inspiratory (end-
insp) gate reconstructed without and with total variation (TV)
regularisation. The horizontal line represents the superior-most
diaphragm position in the reference gate, end-expiration.

2.1.2 Self-gating and Reconstruction of respiratory
gates

For the GRPE sampling scheme, the central (ky = kz = 0)
kx-line is acquired repeatedly. This allows for the extraction
of a self-navigator signal [27, 28]. Each gate was then recon-
structed using the implementation of fast iterative shrinkage-
thresholding algorithm (FISTA) [29] in CIL with spatial TV
regularisation [30].
Fig. 1 shows the end-expiration (which was later used as refer-
ence for the MCIR) and the end-inspiration gates, comparing
both reconstruction algorithms. Changes in the anatomy dur-
ing the breathing cycle mainly along the foot-head direction
are clearly visible. The TV regularisation leads to suppres-
sion of undersampling artifacts and an improved depiction of
the anatomy, which is beneficial for the next step.

2.1.3 Estimation of respiratory motion fields

A non-rigid image registration scheme was then used to cal-
culate the 3D respiratory motion fields from the respiratory
gates. Motion deformation fields were estimated using a
pairwise image registration, using the SIRF wrapper to the
NiftyReg spline-based registration algorithm [31].

2.1.4 Motion-corrected MR image reconstruction

The MCIR optimisation problem was solved with FISTA.
Fig. 2 shows the final MCIR images reconstructed with
FISTA with regularisation. MCIR leads to a clear reduction
of respiratory motion artifacts (e.g., blurring of anatomical
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Figure 2: Uncorr: image reconstruction without motion correction
with blurring due to respiratory motion clearly visible (white arrow
heads). MCIR+TV: MCIR with TV regularisation. MCIR leads to
a clear reduction of motion blurring and improves the visualisation
of the anatomy. TV reduces undersampling artifacts and further
improves image quality.

structures such as the liver and the heart). TV further im-
proves image quality by minimising residual undersampling
artifacts while ensuring a clear depiction of the anatomy.

2.1.5 Motion-corrected PET image reconstruction

The motion fields from the previous section were used to
reconstruct a motion-corrected PET image. We first esti-
mated a coordinate transformation between the PET and MR
images to cope with, for instance, gantry misalignment by
performing a rigid registration between simultaneous MR
and PET images reconstructed without attenuation correction
(AC).
The GRPE acquisition was used for the separation of fat and
water tissue and the calculation of a segmentation-based AC
map [32] in the reference position. The construction of the
MR-based AC map was not carried out in SIRF as it required
segmentation tools not yet implemented in SIRF. The AC
map was then deformed to each of the gates. An average
AC map was computed for the ungated data. Randoms and
scatter were computed from the ungated data and evenly
divided over the gates.
Data were then reconstructed as follows: a single iteration of
OSEM (24 subsets) [33] was used for initialisation of relaxed
OSSPS (90 iterations, 7 subsets) [34] with resolution mod-
elling and a quadratic Gibbs prior. Local weights were used

Figure 3: Comparison of (relaxed) OSSPS reconstructions with-
out motion correction (top) and with gating and RTA (bottom).
Both reconstructions after 420 updates with regularisation strength
α = 0.0005.

in the prior to obtain approximately uniform resolution [35].
Two example reconstructions are shown:

• no motion correction, i.e., using the ungated data

• RTA, where each gate was reconstructed separately, and
resulting images were warped back to the reference
position using the MR-derived deformation fields and
then averaged.

3 Discussion and Outlook

We have presented recent improvements of SIRF, concen-
trating on motion correction and its integration with CIL
for regularised reconstruction. Respiratory gates were re-
constructed from a non-Cartesian 3D MR, and non-rigid
respiratory motion fields were obtained using the NiftyReg
integration in SIRF. These motion fields were then used for
motion-compensation of both MR and PET.
We used MCIR for the MR reconstruction, while the pre-
sented example for PET reconstruction used RTA. However,
RTA is known to have limitations due to count statistics of
the gated data [36]. Please refer to [11] for an example of
MCIR for PET with SIRF.
We intend to continue to develop SIRF for researchers to
be able to exploit synergy in multi-modal, multi-contrast,
multi-time point information for a greater range of appli-
cations. We welcome contributions via https://github.
com/SyneRBI/SIRF.
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