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The newly developed core imaging library (CIL) is
a flexible plug and play library for tomographic
imaging with a specific focus on iterative
reconstruction. CIL provides building blocks for
tailored regularized reconstruction algorithms and
explicitly supports multichannel tomographic data.
In the first part of this two-part publication, we
introduced the fundamentals of CIL. This paper
focuses on applications of CIL for multichannel
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data, e.g. dynamic and spectral. We formalize different optimization problems for colour
processing, dynamic and hyperspectral tomography and demonstrate CIL’s capabilities for
designing state-of-the-art reconstruction methods through case studies and code snapshots.

This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’.

1. Introduction
Over recent years in X-ray computed tomography (CT), there has been a growing interest in
dynamic and spectral CT thanks to the technological advancements on detector speed and
sensitivity and on multichannel photon-counting detectors (PCDs), as depicted in the EPSRC
Tomography roadmap [1].

In dynamic CT, the aim is to reconstruct a series of images and depict the complete spatio-
temporal response of the scanned object. These temporal variations may occur because the
composition/structure evolved, e.g. corrosion, or the object is subject to external input, e.g.
compression, or the object moved during the scanning process.

In spectral CT, using a pixelated energy sensitive detector, it is possible to collect n energy-
specific radiographs, where n is the number of energy channels. As a result for any voxel in the
system, it is possible to reconstruct the profile of attenuation coefficient as a function of energy, or
conversely to create a tomogram corresponding to each energy bin. Since each chemical element
has a characteristic attenuation profile this provides a fingerprint of the elements in each voxel.
This fingerprint is especially clear for attenuation spectra that includes the energies corresponding
to the X-ray absorption edges (K-edges) for the elements concerned, because there is an abrupt
change in attenuation on either side of the edge [2]. Moreover, in pulsed neutron imaging data,
sharp edges can also be imaged [3]. In this case, the edges, i.e. the Bragg edges, correspond to
abrupt increases in the transmitted spectrum, when the energy is below that possible for Bragg
diffraction out of the beam for each diffraction peak providing unique fingerprints corresponding
to different crystal structures. In general, for spectral imaging, because the signal is allocated to
a number of energy bins rather than accumulated to give a single image, the energy-resolved
data acquired usually suffer from low signal-to-noise ratio, acquisition artefacts and angular
undersampling making tomographic image reconstruction difficult.

The scope of this paper is to present the capabilities of the Core Imaging Library (CIL) (https://
www.ccpi.ac.uk/cil), releases available at [4,5], of the collaborative computational project in
tomographic imaging (CCPi) for multichannel tomography. It allows one to reconstruct higher
quality images and ensure more accurate spatiospectral K-edge identification, see for instance
[6,7], where novel reconstruction methods are introduced for laboratory-based hyperspectral CT
and neutron tomography, respectively. CIL is an open source, object-oriented library (primarily
written in Python) for processing tomographic data. We can read, load, preprocess, reconstruct,
visualize and analyse tomographic data from different applications, e.g. X-ray CT, X-ray
laminography, neutron tomography (NT) and positron emission tomography (PET).

(a) Outline of the paper
In the first section, we give a brief overview of CIL and introduce notation for the optimization
framework necessary for the reader to make the transition from mathematical formulation to
code. Then, we consider a simple exemplar case study involving two simple three-channel
imaging tasks, i.e. colour denoizing and inpainting. For the first task, the aim is to solve the total
variation (TV) denoizing problem using the fast gradient projection (FGP) algorithm [8]. For the
inpainting problem, we use the total generalized variation (TGV) regularization and solve it using
the primal-dual hybrid gradient algorithm (PDHG) [9]. In the following sections, we consider
two real tomography applications, namely dynamic X-ray and hyperspectral CT. In §4, we focus
on dynamic tomographic imaging with severely limited projection data. We compare different
regularizers defined over the spatio-temporal domain and under different undersampled
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acquisition geometries, including Tikhonov, TV and directional total variation (dTV) regularizers.
In the final example, we deal with four-dimensional hyperspectral tomographic data. We use a
stochastic version of the PDHG [10], with TV regularization to reconstruct the data with different
coupling between spatial and spectral dimensions.

2. Core imaging library

(a) Overview
In Core Imaging Library - Part I [4], we described the main building blocks of CIL: cil.framework,
cil.optimization, cil.processors, cil.io and cil.utilities. We illustrated the basic usage of CIL
data structures, as applied to a number of X-ray CT cases with different geometries, e.g.
parallel, cone and laminography and also different modalities such as NT and PET. CIL wraps a
number of third-party libraries, using cil.plugins, to perform various operations required for CT
reconstruction. For instance, we can use the Astra-Toolbox [11] or TIGRE [12], to perform forward
and backward projection steps, filtered back projection (FBP) and Feldkamp–Davis–Kress (FDK)
reconstructions for different acquisition geometries and can use the CCPi-Regularization Toolkit
(CCPi-RGL) [13], to employ several regularizers with a CPU/GPU hardware acceleration. In
addition, CIL is designed such that the data structures of the Synergistic Image Reconstruction
Framework (SIRF) [14], from the collaborative computational project in synergistic reconstruction
for Biomedical Imaging (CCP-SynerBi), www.ccpsynerbi.ac.uk, can be used for PET and magnetic
resonance imaging (MRI) reconstruction [15].

(b) Optimization framework
The cil.optimization framework contains three structures, namely Function, Operator and
Algorithm that formalize a generic optimization problem for imaging applications as

u∗ = arg min
u∈X

f (Ku) + g(u) ≡ arg min
u∈X

n−1∑
i=0

fiKi(u) + g(u). (2.1)

We let X, Y denote finite-dimensional vector spaces, K : X → Y a linear operator with operator
norm ‖K‖ = max{‖Ku‖Y : ‖u‖X ≤ 1} and proper, convex functions f : Y → R, 1 g : X → R. Note that
in certain cases, it is convenient to decompose Y = Y0 × . . . × Yn−1, n ≥ 1 and consider a separable
function f (y) := f (y0, . . . , yn−1) = ∑n−1

i=0 fi(yi) which results in the right-side formulation in (2.1).
In the following case studies, using different definitions for the triplet (K, f , g), we can express

optimization problems for several imaging tasks. For example, in denoising, we let K be the
identity operator, in inpainting it is a mask operator that encodes missing pixel information, while
it is a projection operator for tomography. The functions f , g allow us to define a fidelity term,
that measures the distance between the acquired data b and the forward-projected reconstruction
image as well as a regularizer, which enforces a certain regularity on u. If the noise follows
a Gaussian distribution an appropriate choice for the fidelity term is ‖Kx − b‖2

2. In the case
of impulse noise, the L1 norm ‖Kx − b‖1 leads to more efficient restorations and for Poisson
noise the Kullback–Leibler divergence

∫
Kx − b log Kx is the most suitable choice. The choice of

the regularizer, e.g. Tikhonov, TV and TGV, favours minimizers of (2.1) with certain geometric
features and is usually weighted by positive parameters to control the influence between data
fidelity and regularization terms.

In this paper, we mainly focus on model-based variational problems, meaning that the forward
operator K and the probability distribution of the observational noise are known a priori. In
particular, for X-ray CT [4], PET or MRI [15] applications, noise distribution and hence the
appropriate distance functions are well established, see [16]. CIL may also be employed in an
ad hoc fashion if the noise type is unknown, to experiment with which norm provides the best

1
R := R ∪ {∞}.
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reconstruction result empirically, as shown in [17]. More specific blind noise methods are an active
research beyond the current scope of CIL and we hope to expand in these directions, within a
general data-driven framework in the future, see for instance [18] and references therein.

In order to find an approximate solution for minimization problems of the (2.1) form, we
use a different CIL Algorithm for smooth and non-smooth objective functions such as the
conjugate gradient least squares (CGLS), simultaneous iterative reconstruction technique (SIRT)
and proximal type algorithms, which are extensively used in this paper, such as the FGP and the
PDHG, SPDHG algorithms. In the FGP algorithm, we require that the function g has a proximal
operator defined as

proxτg(u) := arg min
v

1
2
‖v − u‖2

2 + τg(v), (2.2)

which has a ‘simple’ closed form solution or can be computed efficiently numerically. Also, we
assume that f is continuously differentiable and has Lipschitz continuous gradient L. On the other
hand, in the PDHG algorithm, we allow functions f and g to be non-differentiable and express
(2.1) into a saddle point problem,

min
u∈X

max
z∈Y

〈Ku, z〉 − f ∗(z) + g(u), (2.3)

where f ∗ denotes the convex conjugate of f . Under this set-up, PDHG can decouple the initial
problem (2.1) into two simple problems, using as before the proximal operators of g and in
addition the proximal operator of f ∗,

proxτ f ∗ (u) := arg min
v

1
2
‖v − u‖2

2 + τ f ∗(v). (2.4)

3. Case study I: colour image processing
We begin our first demonstration with a case study within a colour imaging framework, i.e.
a vector-valued image that has just three channels: red, green and blue. Our test data are a
high resolution double rainbow2 image taken from a smartphone of 1194 × 1353 pixels and three
channels, see figure 1a. We let

Ω = {(i, j) |0 ≤ i < M, 1 ≤ j < N, M = 1194, N = 1353}
be a rectangular discretized grid representing our image domain and define an RGB colour image
u as

u : Ω → R
3, u = (u1, u2, u3),

where uk ∈ R
M×N , k = 1, 2, 3 represent the red, green and blue channels. We consider the cases of

(a) denoising a noisy image corrupted by simulated Gaussian noise, see figure 1b,
(b) inpainting + denoising of a noisy image corrupted by simulated Salt & Pepper noise with

missing text information, see figure 1d.

(a) Colour denoising
We start with one of the most fundamental and well-studied problems in image processing, that
is image denoising. In the pioneering work, Rudin, Osher and Fatemi (ROF), [19], introduced the
TV regularizer to tackle image denoising for greyscale images u : Ω → R. Given a noisy image b
corrupted by additive Gaussian noise, they solve the following optimization problem

u∗ = arg min
u

1
2
‖b − u‖2

2 + αTV(u), (3.1)

where TV denotes the discretized TV defined as the �2,1 norm of the gradient. If the gradient
is Du := (Dyu, Dxu), where Dy, Dx denote the finite differences along the y and x directions,

2Image can be downloaded from https://github.com/TomographicImaging/CIL-Data.
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(e) ( f )

(b)(a) (c)

(d )

Figure 1. Colour processing: (1st row) total variation denoising. (2nd row) Total generalized variation inpainting and denoising.
Regularizing parameters are optimized based on the SSIM value. (a) Ground truth, (b) noisy_data (Gaussian noise), (c) VTV
denoising (α = 0.15) PSNR= 26.441, SSIM= 0.739, (d) noisy_data (salt and pepper noise with missing pixels), (e) TGV
inpainting (α,β)= (0.5, 0.2) PSNR= 32.880, SSIM= 0.960, (f ) absolute difference |(e) − (a)|.

respectively, we write

TV(u) = ‖Du‖2,1 =
M,N∑

i,j

(|(Dyu, Dxu)|2
)

i,j =
M,N∑

i,j

(√
(Dyu)2 + (Dxu)2

)
i,j

. (3.2)

The above definition can be extended for vector-valued images, which results in a vectorial
version of the TV. The gradient for the RGB case is now Du = (Du1, Du2, Du3), where for each
k = 1, 2, 3, Duk := (Dyuk, Dxuk). The vectorial (channelwise) total variation (VTV), see [20] for more
definitions of VTV, is defined as

VTV(u) := ‖Du‖2,1 =
3∑

k=1

M,N∑
i,j

(|Duk|2)i,j

=
3∑

k=1

M,N∑
i,j

(√
(Dyuk)2 + (Dxuk)2

)
i,j

. (3.3)

For both greyscale and coloured images, we can set up the regularizers (3.2) and (3.3) using the
TotalVariation function in CIL. The optimization problem that we solve for the colour denoising
is similar to (3.1) but using the VTV regularizer, i.e.

u∗ = arg min
u

1
2
‖b − u‖2

2 + αVTV(u), (3.4)
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where b is shown in figure 1b. One can observe that (3.4) is in fact the proximal operator (2.2) with
τ = 1.0 evaluated at b. We solve (3.4), using the fast gradient projection (FGP) algorithm that is
contained in the proximal method of the TotalVariation function.

It is clear from figure 1 that noise is reduced, while preserving the edges of the image. However,
TV is known for promoting piecewise constant reconstructions leading to images with blocky
structures. This is called the staircasing effect and becomes apparent in smooth regions, see for
instance the area around the rainbow in figure 1c.

(b) Colour inpainting
Given an image where a specific region is unknown, the task of image inpainting is to recover the
missing region from the known part of the image. A popular application of inpainting is in art
restoration, where damaged or missing areas are repainted, i.e. filled, based on the surrounding
context. We let D ⊂ Ω be a subdomain of Ω , i.e. the inpainting domain, where no data are known
and missing information should be interpolated. In this example, our input image is shown in
figure 1d, where in addition to Salt & Pepper noise, missing pixels from a repeated text are
incorporated. A suitable data fidelity term for this kind of noise distribution is the L1 norm that
acts on the domain Ω \ D.

To overcome the staircasing artefacts that TV promotes, we employ a higher-order regularizer,
namely the total generalized variation introduced in [21]. We let α, β > 0 be regularization
parameters and define

TGVα,β (u) = min
w

α‖Du − w‖2,1 + β‖Ew‖2,1, (3.5)

where E denotes the symmetrized gradient operator defined as Ew = (1/2)(Dw + DwT). The
optimization problem above provides a way of balancing between the first and second derivative
of an image u. In particular, one expects that in the neighbourhood of edges, the second derivative
D2u is relatively ‘large’, hence a reasonable choice is to let w = 0 in (3.5) and recover the TV
regularizer. On the other hand, D2u is relatively small in smooth regions of an image and w = Du
is a proper condition for the minimization problem (3.5). Under this format, edges are preserved,
as in the TV regularizer, and additionally piecewise smooth structures are promoted.

The minimization problem under the TGV regularizer and the L1 norm as a data fidelity term
is the following:

u∗ = arg min
u

‖Mu − b‖1 + TGVα,β (u) ⇔

and (u∗, w∗) = arg min
u,w

‖Mu − b‖1 + α‖Du − w‖2,1 + β‖Ew‖2,1,

⎫⎪⎬
⎪⎭ (3.6)

where the M is a diagonal operator with 1 in the diagonal elements corresponding to pixels in
Ω \ D and 0 in D. In CIL, we use the MaskOperator that accepts as an input a two-dimensional
boolean array, i.e. mask. Since we have a colour image, we employ the ChannelwiseOperator

to encode the effect of missing pixels to the RGB channels. In order to solve (3.6), we use the PDHG
algorithm, where the first step is to express (3.6) in the general form of (2.1). Let u = (u, w) ∈ X and
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define an operator K : X → Y as

K =

⎡
⎢⎣M O

D −I
O E

⎤
⎥⎦ ⇒ Ku = K

[
u
w

]
=

⎡
⎢⎣ Mu

Du − w
Ew

⎤
⎥⎦ =

⎡
⎢⎣y1

y2
y3

⎤
⎥⎦ = y ∈ Y, (3.7)

where O, I denote the zero and identity operators respectively. We continue with the definition
of the functions f and g. The function f is a separable function that contains the three terms in (3.6)
and is defined as

f (y) := f (y1, y2, y3) = f1(y1) + f2(y2) + f3(y3), where

and f1(y1) := ‖y1 − b‖1, f2(y2) := α‖y2‖2,1, f3(y3) := β‖y3‖2,1,

}
(3.8)

and g(u) = g(u, w) = O(u) ≡ 0 is the zero function.
Using (3.7) and (3.8), we have that

f (Ku) + g(u) = f

⎛
⎜⎝

⎡
⎢⎣ Mu

Du − w
Ew

⎤
⎥⎦

⎞
⎟⎠ = f1(Mu) + f2(Du − w) + f3(Ew)

= ‖Mu − b‖1 + α‖Du − w‖2,1 + β‖Ew‖2,1,

which is exactly the objective function in (3.6).
In CIL, (3.7) can be expressed easily with the BlockOperator K and it is filled

row-wise. The elements are the GradientOperator D, the IdentityOperator I, the
SymmetrisedGradientOperator E , the ChannelwiseOperatorM and two ZeroOperator

O. The separable function in (3.8) can be expressed by the BlockFunction f , whose elements
are the L1Norm, and two MixedL21Norm functions. Finally, g is the ZeroFunction function.
We choose the PDHG algorithm to solve such an optimization problem. Without any user
input, CIL will by default use primal/dual stepsizes σ , τ with σ = 1.0 and τ = 1.0/σ‖K‖2

that satisfy στ‖K‖2 < 1 to guarantee convergence. We can monitor its convergence every
update_objective_interval=100 using verbose=2. However, to speed up convergence
it may be necessary to change such default values.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 D

ec
em

be
r 

20
21

 



8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200193

................................................................

The TGV reconstruction is presented in figure 1e, where there are no staircasing issues and
most of the repeated text is eliminated. We observe that the inpainting process behaves quite
well when the background is relatively smooth, e.g. sky. However, in regions with specific
textures, such as trees, leaves and grass, TGV inpainting could not completely restore the missing
pixels, see the absolute difference between the ground truth and reconstruction in figure 1f.
In the above two examples, the optimal regularization parameters are chosen to maximize the
structural similarity index measure (SSIM), [22]. In terms of TGV, it is usually sufficient to find an
optimal ratio β/α, thus reducing the number of parameters to be optimized, in order to obtain a
high-quality reconstruction, [21,23].

How to select the best regularization parameter(s) is an important question and automated
methods for doing this is an active research area beyond the scope of this article. This is of
particular importance in real case scenarios when the comparison with the ground truth cannot
guide this choice. In this paper, we choose to follow a direct grid search of parameters for
simplicity. In a future release, we hope to provide reconstruction algorithms with automated
parameter selection methods providing the user with an end-to-end pipeline. We refer the reader
to the following papers where a number of methods to select the regularization parameters
are presented for different imaging applications, e.g. the L-curve method [24,25], the S-curve
method [26], the Morozov Discrepancy principle [27–30] and when the regularization parameter
is spatially dependent, one can use [31–34].

4. Case study II: dynamic tomography

(a) Motivation
The focus of this section is on dynamic CT, [35], where the aim is to scan a sample that undergoes
some change, be it internal, such as an evolution of its composition or due to external input, like
applied torque or compression, [36]. These changes must be slow with respect to the time it takes
to acquire a single tomogram [37], otherwise the reconstructions would suffer from severe motion
artifacts or the quantification would be meaningless. The duration of a CT scan is determined by
the time needed to acquire a sufficient number of projections of the sample viewed from different
angles with the required signal-to-noise ratio. This is determined mainly by detector performance
and X-ray source intensity, and can vary from few projections per minute, as for laboratory X-ray
CT scanners, to thousands of projections per second, as in the case of synchrotrons.

One way to increase the temporal resolution is by faster scanning through undersampling,
i.e. by reducing the number of acquired projections, leading to sparse tomographic views.
Sparse CT reconstruction is a highly ill-posed problem and has received great attention lately
in the tomography community, [38–40] and especially in view of dynamic CT, [41–44]. Another
beneficial consequence of Sparse CT is that it allows the reduction of radiation dose to the sample,
which is for instance extremely useful in medical imaging where one can reduce both the radiation
dose to the patient, and the duration of the imaging [45].

In the following, we focus on different reconstruction methods for sparse dynamic CT, using
an open-access dynamic dataset available from [46]. The aim is to demonstrate how to increase
the temporal resolution, or to reduce the radiation dose of a CT scan, without sacrificing
the quality of the reconstructions. After the description of the dataset and of three possible
undersampling configurations, we demonstrate how the standard reconstruction algorithm
FBP, applied separately for each time step, leads to severe streak artifacts due to the limited
number of projections. We then demonstrate how to use CIL to employ iterative reconstruction
algorithms with three different regularization methods that incorporate prior information in
the spatio-temporal domain to obtain quantitative information, to suppress the undersampling
artifacts and noise on the reconstruction. At the end of the section, we compare the results
obtained with all the reconstruction methods presented and demonstrate the improvements in
temporal resolution and image quality enabled by a suitably chosen iterative reconstruction
algorithm.
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Figure 2. Sinogram data with 360 projection angles of the gel-phantom for four different time-frames.

(b) Data information
(i) Description

The sample was an agarose-gel phantom, [47], perfused with a liquid contrast agent in a 50
ml Falcon test tube (ø 29 × 115 mm). The aim of this experiment was to simulate diffusion of
liquids inside plant stems, which cannot withstand high radiation doses from a denser set of
measurement angles. After the agarose solidified, five intact plastic straws were made into the
gel and filled with 20% sucrose solution to guarantee the diffusion by directing osmosis to the
gel body.

(ii) Acquisition

Each scan was acquired in 4.5 min with intermissions of approximately 15 minutes between
consecutive measurements. In total, the acquisition process lasted about 3 h leading to 17
sinograms, one for each time state. In addition, pre-scan and post-scan measurements are
acquired with a noticeably higher number of projections; 720 and 1600 projections, respectively.
The acquired sinograms are pre-processed using Lambert–Beer negative logarithm conversion.

(iii) Dataset

Every measurement consists of 360 projections with 282 detectors bins obtained from a flat-panel
circular-scan cone-beam microCT-scanner. Only the central slice is provided, resulting in a 2D
fanbeam geometry. For this experiment, our reconstruction volume is 256 × 256 of 17 time frames.
Additional metadata information, such as distance from source to the detector and distance from
source to the origin are provided to set up the cone beam geometry.

(c) Dynamic sparse CT set-up
Firstly, we configure our AcquisitionGeometry ag for a two-dimensional cone-beam
geometry using information about the position of the source and the detector, the dimensions
of the panel using set_panel and the projection angles using set_angles. In order to
set up a multichannel geometry, we use set_channels which refer to the 17 time frames.
Next, we allocate space for our acquisition dataset of 360 projection angles, data_360, that
is filled with the corresponding sinograms for each of the 17 time frames. The Zenodo data
are provided as a MATLAB mat-file that can be read in e.g. using scipy.io.loadmat, which
produces a list of sinograms containing the 17 sinograms, see figure 2. We obtain the default
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corresponding ImageGeometry ig for the acquired dataset of 360 projection angles using the
get_ImageGeometry method from ag. The default dimensions are the same as the number
of detector bins; here we reduce it to 256 by 256. Note that our image domain is a 2D + time
spatiotemporal volume, i.e.

Ω = {(i, j, t) : 0 ≤ i < M, 0 ≤ j < N, 0 ≤ t < T, M = N = 256, T = 17}.

We begin our reconstructions with the classical FBP algorithm with a Ram–Lak filter that is
applied separately to the full data in each time frame, see top row in figure 4. In a practical
sparse CT set-up, 360 projection angles would not be available, however, we use the full-data FBP
reconstruction as our ground truth for assessing reconstruction quality from undersampled data
quantitatively and for finding the optimal regularization parameters for the methods described
below.

In order to create undersampled dynamic data for different projection angles, we employ
the Slicer processor, that is described in [4]. We create different equi-angular undersampling
patterns, using the step sizes of [5, 10, 20], along the angle direction, leading to the datasets
data_72, data_36, data_18 of 72, 36 and 18 projections, respectively. This means that we are
able to increase the temporal resolution or reduce the radiation dose by a factor 5, 10 and 20,
respectively. Finally, new projection operators are defined, e.g. A_72, A_36, A_18, based on the
undersampled acquisition geometries and the image geometry that remains the same for all cases.

(d) Tikhonov regularization
In [4], we presented in detail how one can set up Tikhonov regularization for single channel X-ray
tomography. For our current dynamic case, we can formulate the identical problem, namely

u∗ = arg min
u

1
2
‖Au − b‖2

2 + α‖Lu‖2
2, (Tikhonov) (4.1)
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where, b is now the multichannel sinogram, e.g. data_360 or data_18, containing all 17 time
frame sinograms and A is now the corresponding multichannel projection operator, e.g. A_360

or A_18. The second term in (4.1) acts as a smooth regularizer, where the linear operator L,
can be for example an identity or a gradient operator D, acting over the multichannel image
data. In the case of L = D, we offer the user two different modes for the GradientOperator,
where finite differences are computed only along the spatial dimensions or for both the
spatial and channel dimensions. Therefore, if L=GradientOperator(ig,correlation), the
derivatives across every direction in a three-dimensional volume are considered, i.e. Du =
(Dtu, Dyu, Dxu), if correlation=‘SpaceChannels’, whereas if correlation=‘Space’, we
take into account only the derivatives across the spatial dimensions, i.e. Du = (Dyu, Dxu). In the
algorithm comparison, we demonstrate here finite differences over both space and channels, i.e.
we use correlation=‘SpaceChannels’. The code snippet to set up (4.1) in CIL is identical to
the one presented in [4], hence it is omitted here.

(e) Spatio-temporal TV
As a second regularization method, we apply an edge-preserving prior by replacing the L2 term
in (4.1), with the TV regularizer, which in a spatio-temporal setting can be employed either in a
channelwise fashion or as here over the full spatio-temporal volume, i.e.

TV(u) = ‖Du‖2,1 =
M,N,T∑

i,j,t

(√
(Dtu)2 + (Dyu)2 + (Dxu)2

)
i,j,t

. (4.2)

Under this isotropic coupling between space and time, the finite differences along the directions
t, y and x are penalized equally with a single regularizing parameter, promoting piecewise
constant structures in the spatio-temporal volume by solving

u∗ = arg min
u≥0

1
2
‖Au − b‖2 + α TV(u), (spatio-temporal TV). (4.3)

The above minimization problem can be solved using the (explicit) PDHG algorithm, [48], exactly
as in the single-channel case as described in [4], decomposing it into two subproblems, where
the two proximal operators, (2.2) and (2.4) have an explicit closed form solution. As in §3b, f is
now a separable function, i.e. BlockFunction, containing the ‖ · ‖2

2, for the acquisition data,
and ‖ · ‖2,1 norms. Consequently, we can express the operator K as a BlockOperator containing
the multichannel ProjectionOperator A and the GradientOperator. Finally, to enforce a
non-negativity constraint, we let g be the IndicatorBox with lower=0.0. In the code snippet
below, we define the triplet (K, f , g) used in PDHG for the case of 18 projections.
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Figure 3. FBP reconstructions for the acquired data (pre/post scans) with 720 and 1600 projections used as reference images
for the dTV regularizer. The normalized gradient ξv for edge parameterη = 0.005. In both cases, the edges are clearly seen in
the |ξv|2 images. In the latter case, where noise is lower due to the larger number of projections, the edge promoting effect of
dTV can be expected to be stronger.

(f) Directional TV
The third and final regularization method uses a structure-based prior, namely the dTV. To apply
this variational method to sparse CT reconstruction, we adopt the framework of parallel level sets
introduced in [49] and used for different applications such as multi-modal imaging, [50,51]. For
example, an image from another modality, e.g. MRI, reference image, is known a priori and acts as
additional information from which to propagate edge structures into the reconstruction process
of another modality, e.g. PET. Another popular set-up is to use either both modalities or even
channels in a joint reconstruction problem simultaneously, improving significantly the quality of
the image, see for instance [52–54]. In a parallel level set framework, two images, u and v, are
called structural similar if ∇u is parallel to ∇v, where u is the image to be reconstructed, given
the known reference image v. In this sense, we are able to encode additional information on the
location or direction of edges for the (u, v) pair. The dTV regularizer of the image u given the
reference image v is defined as

dTV(u, v) := ‖Dv∇u‖2,1 =
M,N∑
i,j=1

(|Dv∇u|2
)

i,j, (4.4)

where the weight Dv depends on the normalized gradient ξv of the reference image v,

Dv = I2×2 − ξvξ
T
v , ξv = ∇v√

η2 + |∇v|22
, η > 0. (4.5)
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The vector-field ξv is able to capture structural information from the reference image depending
on the edge parameter η and determine which directions to be penalized. For instance, we have
that Dv∇ = (1 − |ξv |22)∇, if ∇u||∇v. Equivalently, if |ξv |2 > 0, aligned gradients are favoured. On
the other hand, if ∇u ⊥ ∇v then Dv∇ = ∇. Finally, note that 0 ≤ |ξv |2 < 1, where the lower bound
is attained for |∇v|2 = 0 (constant regions) and the upper bound when |∇v|2 → ∞ (edges).

In figure 3, we show the pre- and post-scan FBP reconstructions acting as the reference images,
along with |ξv |2 that illustrates how edge information is captured by ξv to be included by the dTV
regularizer. For each time frame t, we solve the following problem

u∗
t = arg min

ut≥0

1
2
‖Ascut − bt‖2 + α dTV(ut, vt) (dynamic dTV), (4.6)

where Asc, bt, u∗
t , denote the single channel ProjectionOperator, the sinogram data and the

reconstructed image for the time frame t respectively. In terms of the reference images (vt)T−1
t=0 , we

use v0 = vpre_scan, i.e. the FBP reconstruction of the pre-scan data with 720 projections, and vt =
vpost_scan, t = 1, . . . , T − 1, for the FBP reconstruction for the data with 1600 projections. We follow
this configuration, because we notice a slight movement of the sample at the beginning of the
experiment. One could apply other configurations for the reference image in the intermediate time
frames. For example, in order to reconstruct the (t + 1)th time frame, one could use the tth time
frame reconstruction as reference. A more sophisticated reference selection approach is applied
in hyperspectral computed tomography in [54].

Similarly to (4.3), we solve (4.6) using the PDHG algorithm, but with an alternative setup
for the triplet (K, f , g). This time one of the subproblems is not solved explicitly but an inner
iterative solver is used, known as implicit PDHG, see [55]. In particular, we let g be the FGP_dTV

regularizing Function from cil.plugins.ccpi_regularization module of CIL, which wraps a
GPU-accelerated implementation of the FGP algorithm in the CCPi-RGL toolkit. Since each time
frame is solved independently of the others, the operator K is now the projection operator for
a single channel K_sc and the functions f and f0 are ‖ · ‖2

2 norms. To store the two-dimensional
reconstruction for every time frame, we use the variable solution allocating space from the all-
channel image geometry ig. Then, we use the fill method to store the reconstruction of every
time step to the solution.
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Table 1. PSNR and SSIM values averaged over all time frames for the FBP, Tikhonov (Tikh.), TV and dTV (η = 0.005)
reconstructions at 18, 36 and 72 projections; highest scoring (in all cases dTV) in each column marked in italics. In addition
the table lists optimal values of the regularization parameter α (in the sense of maximizing PSNR with respect to the ground
truth).

PSNR SSIM optimalα (10−3)

Algo. 18 36 72 18 36 72 18 36 72

FBP 19.589 23.452 27.094 0.526 0.622 0.723 — — —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tikh. 27.157 30.058 31.523 0.647 0.714 0.761 0.01 10 19
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

TV 28.719 31.903 32.919 0.720 0.765 0.784 0.72 0.54 0.81
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dTV 32.017 32.662 33.083 0.770 0.774 0.784 8.1 7.2 8.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For the FGP_dTV Function, we need to specify the corresponding reference image, the
regularization parameter and the smoothing parameter η appeared in (4.4). The optimal
parameters α and η are reported in table 1. In the above code block, we define the projection
operator, the image and acquisition geometries for the case of 18 projections. Then, the functions
f0, g0 are used in the PDHG algorithm to reconstruct the first time frame using the v_pre_scan

as a reference and the functions f , g concern all the other frames using the v_post_scan as a
reference.

(g) Results
In this section, we present results for all the reconstruction methods presented above, e.g.
channelwise FBP algorithm, Tikhonov, TV and dTV regularizations. In figure 4, we present a
static comparison for all the reconstructions, for three undersampled data with 18, 36 and 72
projections as well as the full 360 projections for the 8th time frame. In figure 5, we provide a
temporal comparison for four different frames, for the most interesting case of 18 projections, as
it provides the greatest reduction in acquisition time.

Although, FBP produces satisfying reconstructions for 360 projections, reducing the number
of projections results in streaking artifacts and a decrease in signal-to-noise ratio which is more
pronounced the higher the undersampling, see first row of figure 4. Moreover, the quantification
of the dynamic process is severely hindered by the undersampling, see for instance the first two
rows of figure 5, showing the FBP reconstructions for 360 and 18 projections for four different
time frames.

Compared to the FBP reconstructions, we observe that Tikhonov regularization can suppress
both the noise and the streak artefacts, especially for a very low number of projections, see
second row of figure 4. However, due to the L2 penalty term appearing in (4.1), edges as well
as small details of the image are oversmoothed. In the third row of figure 4, we observe that
noise is completely eliminated by the TV regularization and edges are preserved around the five
circular cavities. This is more obvious in the cases of 72 and 360 projections. For fewer numbers
of projections, staircasing artefacts, introduced by TV, are more apparent both spatially and
temporally, see the blocky artifacts outside the boundaries of these cavities in figure 5. In addition,
due to the low iodine concentration level at the earlier stage, see time frames 0 and 5 in figure 5,
we witness a significant loss of contrast, particularly for the case of 18 projections.

In terms of the dynamic dTV reconstructions, we observe a significant contrast improvement
for all the undersampled data, see the interior of the five cavities. Furthermore, edges are now
well preserved for all the time frames due to the structural information that is integrated from
the reference images vpre_scan and vpost_scan. For instance, we note sharper boundaries around the
cavities compared to the TV reconstructions, specially for the lowest number of projections. This
is also evident for different time frames for the 18 projections case, as one can see in the last row
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Figure 4. Tomographic reconstructions of the gel phantom, for the FBP algorithm, and regularization problems (4.1), (4.3),
(4.6) with a different number of projections for the 8th time frame. The regularization parameters and PSNR/SSIM values are
reported in table 1. All images share the same colour map.

of figure 5, where overall dTV produces the best reconstructions. In particular, we note how the
outer cylindrical edge is correctly reproduced as circular by dTV at 18 projections unlike all other
methods which produce a polygonal outer edge due to the low number of projections.

In figure 6, we compare the time activity (i.e. the reconstructed attenuation value over time)
of the ground truth with the Tikhonov, TV and dTV reconstructions with 18 projections, for
the single-pixel ROI appeared in the left image of figure 5. As expected, we observe very high
oscillations for the FBP reconstruction with 18 projections, which can be reduced using Tikhonov
regularization. Since there is no remarkable temporal variation until the 8th frame, we observe
an almost similar behaviour for the TV and dTV reconstructions. However, dTV reconstruction
provides a better contrast compared to the TV reconstruction that is more apparent after the
9th frame. Overall both dTV and TV are able to reproduce at 18 projections the single-pixel
centre-of-cavity time activity at the same (or even better) quality as FBP using the full 360
projections.

In the problems (4.1), (4.3) and (4.6), all the corresponding regularization parameters are
optimized based on the highest average of PSNR values over all the time frames compared to
ground truth. In figure 7, PSNR values per time frame are computed for the FBP, Tikhonov, TV
and dTV reconstructions for 18 projections with respect to the ground truth. Overall, dTV has
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Figure 5. Tomographic reconstructions of the gel phantom, for the FBP algorithm with 360 and 18 projections, and for the
regularization problems (4.1), (4.3), (4.6) with 18 projections for four different time frames. All images share the same colour
map.

the highest PSNR for all time steps, followed by the TV and Tikhonov regularizations and finally
FBP reconstruction. We also report the PSNR and SSIM values for all cases of undersampled data
and the optimized parameters α, η for all the regularization methods. We observe that for the very
limited angular cases, e.g. (18, 36), dTV reconstructions produce better results, whereas increasing
the number of projections dTV and TV reconstructions are comparable.

(h) Discussion and conclusion
In conclusion, we have described three multi-channel regularized reconstruction methods for
reducing undersampling artifacts in sparse Dynamic CT and their implementation using the
modular building blocks of CIL. We conducted a comparative study of algorithm performance
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Figure 6. Temporal variations in the attenuation of the gel-phantom for specific ROI (blue) shown in the top left reconstruction
of figure 4.
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Figure 7. PSNR values per time frame for the FBP, Tikhonov, TV and dTV reconstructions with 18 projections, compared with
ground truth.

at three different undersampling levels of the full dataset which simulated an increase of
the temporal resolution of the acquisition by a factor of 5, 10 and 20, respectively. The
results demonstrated that the dTV method in particular is capable of obtaining high-quality
reconstructions from reduced data and using it one can obtain the same quantitative information
at a factor of 20 undersampling compared to channelwise FBP applied to full data. It is worth
noting that for the dTV method of §4f access to high-quality pre- and post-scans is required. We
want to stress that the design of the acquisition is crucial. For instance, should the experiment be
acquired using a golden-ratio angular sampling scheme, [37], the experiment could have been let
to run continuously and the time frame separation could have been decided as a post-processing
step. In such a case, figure 6 could have shown a temporal resolution of up to 340 = 17 × 20 time
points, with 18 angles per tomography time frame dataset.
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5. Case study III: hyperspectral tomography

(a) Motivation
For our final case study, we focus on hyperspectral X-ray CT imaging and how CIL can provide
tools to reconstruct and analyse the internal elemental chemistry of an object. In every pixel,
hyperspectral photon-counting detectors can measure the deposited energy during a certain
exposure time and consequently calculate the associated photon energy of that pixel in that
frame. This is repeated many times during the scan, where finally all events are binned into a
single spectrum per pixel. Moreover, these types of detectors can achieve a high energy resolution
(typically less than 1 keV) and can image over hundreds of spectral bands, and allow us to
distinguish materials based on the element characteristic absorption edges, i.e. K-edges.

The main goal of this study is to identify elements of gold and lead from a mineralized ore
sample from a goldrich hydrothermal vein. These materials (Au and Pb) typically appear in very
low concentrations, with deposit size similar to our reconstructed voxel size. With no a priori
knowledge of the distribution of these materials, and the inherently low-count hyperspectral data
it is difficult to achieve satisfactory reconstruction with conventional methods. We demonstrate
here how CIL can be used to easily implement a number of bespoke multi-channel regularized
reconstruction methods in order to accurately identify and segment these deposits.

In the following, we describe the dataset, then we propose and compare three different
reconstruction methods. First, we consider the standard SIRT algorithm which does not make
use of any prior information, along with a variant in which the reconstruction of channel i is used
to warm-start reconstruction of channel i + 1. Next, we describe two advanced regularization
techniques to reconstruct four-dimensional hyperspectral data with different correlation between
spatial and energy information. Finally, we describe how the Stochastic PDHG (SPDHG)
algorithm, [10,56] that uses only a subset of the whole data in every iteration, can be used to
accelerate computations of large dataset reconstruction.

(b) Data information
(i) Description

The sample (ø 20 mm) is extracted from a hydrothermal vein from the Leopard Mine, Silobela,
Zimbabwe. It contains materials such as pyrite (FeS2), quartz (SiO2), gold (Au) and minor
amounts of galena (PbS), chalcopyrite (CuFeS2) and bornite (Cu5FeS4).

(ii) Acquisition

For the data acquisition, the authors, [57], use a colour imaging bay, in the Manchester X-Ray
Imaging Facility (www.mxif.manchester.ac.uk). It is designed to be a flexible work bench for
spectroscopic X-ray imaging and tomography. The corresponding detector is a High Energy
X-ray imaging Technology (HEXITEC) spectroscopic detector that is installed in a Nikon XTH 225
system. The sample is scanned in cone-geometry setup along five separate horizontal positions for
increased field of view. Each sub-projection was acquired with exposure time of 45 s (that is 225 s
for a full stitched projection) with 120 projections covering 360◦. The total scan time was 7.5 h.
The acquired four-dimensional raw sinogram data has three spatial dimensions and one spectral
dimension, i.e. 120 projection angles of 80 × 400 pixels with 800 energy bins ranging from 1.82 keV
to 186.07 keV. The reconstruction volume will be 400 by 400 by 80 voxels.

(iii) Dataset

All the files for this study are freely available and can be downloaded from [58]. It contains (a) 4D
hyperspectral (energy-resolved) X-ray CT projection data, (b) flat-field data, (c) energy in keV
for every energy bin and (d) geometric metadata of the cone-beam setup. Sinogram data from
selected energy channels are presented in figure 8. These have been pre-processed by taking the
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Figure8. Selected sinograms at three different energies fromhyperspectral X-ray CT dataset consisting of 800 energy channels,
120 projection angles and 400 detector bins; sinogram for the 20th vertical slice out of a total 80 slices.

natural logarithm of the normalized intensity in every spectral band and corrected for severe
vertical stripes that would cause ring artifacts, using the RingRemover processor. During the
acquisition process 800 energy channels were recorded. It is possible to consider the full energy
range, however for demonstration purposes, we choose to examine an energy interval, [75.15 keV,
93.37 keV], of 80 channels that encompasses the K-edges of gold (Au, 80.725 keV) and lead (Pb,
88.005 keV).

(c) SIRT and warm-started SIRT reconstruction
For our first reconstruction method, we use the SIRT algorithm, an algebraic iterative method for
a particular weighted least-squares problem which in addition accepts certain convex constraints
such as a non-negativity constraint, see [4]. We enforce this as in §4e with the IndicatorBox

function. SIRT is applied channelwise for each three-dimensional dataset.
In addition to channelwise SIRT, one can enable a warm initialization, that allows a basic form

of channel correlation in the reconstruction as used in [57]. Here, we initialize the SIRT algorithm
for the (i + 1)th channel with the solution of the ith channel.
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As shown in the code, we first need to extract the acquisition and image geometries, i.e. ig3D

and ag3D, respectively, using the geometry information for one of the channels of the four-
dimensional data. Then, we set up the corresponding single-channel projection operator A3D.
For every channel, we run 100 iterations of the sirt3D instance of the SIRT algorithm and its
solution is filled to the corresponding channel i of the final four-dimensional reconstruction
sirt_recon4D.

(d) Spatiospectral TV & (3D + spectral) TV regularization
To be able to preserve edges both in the spatial domain and absorption K-edges in the energy
spectrum we propose to use the TV regularization, subject to a non-negativity constraint. We first
consider the TV regularizer extended to a four-dimensional volume, where the gradient Du =
(Deu, Dzu, Dyu, Dxu) is coupled isotropically. We solve

u∗ = arg min
u≥0

1
2
‖Au − b‖2

2 + α‖(Deu, Dzu, Dyu, Dxu)‖2,1 (spatio-spectral TV). (5.1)

This regularizer combines the spatial and energy variations which are penalized by a single
regularizing parameter. However, this may not be a good choice as the magnitude of the gradient
in the spectral dimension will not necessarily be of the same order of magnitude as the one on the
spatial dimensions. Therefore, it may be better to enforce separate regularization with respect to
the energy and spatial gradients, i.e. Deu and (Dzu, Dyu, Dxu), respectively. We therefore consider
an alternative formulation with separate decoupled TV regularizers for the spectral and spatial
dimensions, i.e.

u∗ = arg min
u≥0

1
2
‖Au − b‖2

2 + β‖Deu‖1 + α‖(Dzu, Dyu, Dxu)‖2,1 (3D + spectral) TV. (5.2)

One can solve the above problems using for instance the (explicit) PDHG algorithm. For the
triplets (K, f , g), the function g is the same for both problems (IndicatorBox) and the difference
is with respect to the operator K and the functions f . In (5.1), the operator K and function f are
similar to the (explicit) PDHG algorithm described in the dynamic CT section. To achieve the
separation of the spatial and energy components of the GradientOperator, we can set the
parameter split=True so that it will split the spatial gradients and the gradient along the energy
direction, i.e. (De, (Dz, Dy, Dx)). Similarly, we need to provide a decomposition for the function f ,
using two BlockFunction that contain the three terms presented in (5.1). The following code
blocks present the definition of the triplets (K, f , g) for the problems (5.1), (5.2), required to run the
PDHG algorithm as described in the previous sections.
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(e) SPDHG algorithm
Although we can follow exactly the same set-up presented in the previous section to solve the
above problems, one has to perform forward and backward operations of the projection operator
A for the whole multichannel dataset every iteration. These operations are computationally
expensive, especially for large datasets. In order to overcome this problem, CIL allows the user
to employ the stochastic PDHG (SPDHG) algorithm, where the above operations are applied to a
randomly selected subset of the data in every iteration. SPDHG has been used for different clinical
imaging applications, such as PET, [56] and motion estimation/correction in PET/MR, [15], and
produces significant computational improvements over the PDHG algorithm.

Algorithm 1 Stochastic PDHG (SPDHG).

Inputs: n = #subsets, γ = 1.0, ρ = 0.99, probability pi, i = 0, . . . , n − 1
Stepsizes: Si = γ

ρ
‖Ai‖ , T = mini

1
γ

ρpi
‖Ai‖ , i = 0, . . . , n − 1

Initialize: x0, z0 = z0, y0

Update: xk, yk, zk

1: for k ≥ 0 do
2: xk+1 = proxT

G(xk − Tzk)
3: Select i ∈ [n] at random with probability pi
4: yk+1

i = proxSi
F∗

i
(yk

i + SiAixk+1)

5: �z = AT
i (yk+1

i − yk
i )

6: zk+1 = zk + �z
7: zk+1 = zk+1 + �z

pi

8: end for

The set-up of the SPDHG algorithm is similar to the PDHG algorithm with the notable
differences that we need to define the subsets, which are the n terms in the sum (2.1), as well as a
list of probabilities for each subset to be selected in every iteration, see algorithm (e) for SPDHG
pseudocode. SPDHG, as well as PDHG, can be set up in an explicit form, when the regularizer is
a term in the sum, or in the implicit form where it is represented by g.

In our hyperspectral reconstruction, we use the explicit form of SPDHG. The 120 projections
which constitute the acquisition data are split into S = 10 data subsets of 12 angles each, b = (bi)

S−1
i=0 .

In addition, we will have one regularizer subset. We can now rewrite (5.1) and (5.2), in the form
(2.1) where n = S + 1 and Ai represents the projection operator for a data subset, bi, and with
fi = 0.5‖Aiu − bi‖2

2 for i = 0, . . . , S − 1, and An−1 = ∇ with fn−1 being the alpha*MixedL21Norm

() for the spatio-spectral TV regularizer or the splitTV for the (3D + spectral) TV
regularizer.

We can configure different sampling patterns, i.e. the choice of the probabilities pi to select the
ith term of (2.1). One may choose to assign an equal probability for every term n, i.e. pi = 1/n,
i = 0, . . . , n − 1; we refer to this as uniform sampling. Another option, known as balanced sampling,
is to give a probability 0.5 to select the regularizer subset and 0.5/S to select any one data subset.
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In the following, we choose the balanced sampling approach and refer the reader to [56] for a
discussion on SPDHG sampling patterns.

We use the Slicer processor to obtain the data subsets (bi)
S−1
i=0 . For each data

subset’s acquisition geometry, we create a list of operators (A0, . . . , AS−1), using the
ProjectionOperator that share the same image geometry ig. For the function f , we use
a list of the L2NormSquared Function with respect to each of the data subsets bi for every
i = 0, . . . , S − 1.

Depending on which problem we solve, the corresponding gradient operator is appended to the
list of (Ai) operators, i.e. Grad1 or Grad2 and wrapped using the BlockOperator. Similarly,
the list of data fidelity terms are wrapped as a BlockFunction f .

Finally, the code to set up and run the SPDHG algorithm for both (5.1), (5.2) minimization problems
under a non-negativity constraint and using a list of subset probabilities specifying balanced
sampling is:

(f) Results
To assess performance of the algorithms considered, we reconstruct the hyperspectral dataset and
compare reconstructions visually (figure 9) and in terms of their ability to reproduce the expected
sharp K-edge jumps in gold and lead containing voxels (figure 10).

In the first rows of figure 9, we present results for the two versions of SIRT at three different
energies, below, in between and above the K-edges of Au at 80.725 keV and Pb at 88.005 keV. Since
in the basic SIRT algorithm there is no regularization to remove the noise, it is difficult to locate
the ROIs of gold and lead for low energies, see the first row in figure 9. When the channels are
linked by warm-started SIRT, we observe better contrast on these specific ROIs and both gold and
lead materials are easy to distinguish. However, due to high spectral noise, the SIRT energy plots

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

04
 D

ec
em

be
r 

20
21

 



23

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A379:20200193

................................................................

0

(3
D

 +
 s

pe
ct

ra
l)

 T
V

sp
at

io
sp

ec
tr

al
 T

V
SI

R
T

 (
w

ar
m

 s
ta

rt
)

SI
R

T

77.46 keV

ROI1 (gold)

quartz

5 mm

ROI2 (lead)

84.38 keV 91.30 keV

0.1 0.2 0.3 0.4

attenuation

Figure 9. SIRT reconstructionswithout andwith channel correlation, Spatiospectral TV and (3D+ spectral) TV reconstructions
using the SPDHG algorithm. Three different energies are presented at the 20th vertical slice: (1st column) below the gold K-edge,
(2nd) after the gold K-edge but before the lead K-edge and (3rd) above the lead K-edge.

show highly oscillatory attenuation profiles, particularly for the Au plot, see figure 10. This could
make the detection of the K-edge and hence the material unreliable, particularly for cases where
we do not have prior knowledge of elemental composition.

In the last rows of figure 9, we present the spatio-spectral TV and (3D + spectral) TV
reconstructions for three different energy channels, using the SPDHG algorithm with 10 subsets
and 25 epochs that correspond to 500 iterations. The regularization parameters α are chosen by
visual comparison reducing noise and preserving edges both spatially and along the spectral
direction. Compared to the SIRT reconstructions, noise is reduced spatially and contrast is
enhanced using the spatio-spectral TV regularizer. However, moving along different channels
noise is still apparent, see the first row in figure 9 and green energy curves in figure 10. This
is because the spectral differences have less impact compared to the spatial differences in the
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Figure 10. Attenuation plots as a function of X-ray energy for SIRT (without and with channel correlation), Spatio-spectral TV
and (3D+ spectral) TV reconstructions for the gold (ROI1) and lead (ROI2) shown in figure 9.

isotropic coupling of (5.1). However, the spectral noise could be reduced further by choosing a
higher regularizing parameter for the spatio-spectral TV, but then small features would be lost
spatially due to loss of contrast. This is an inherent limitation of the coupled spatio-spectral
regularization. On the contrary, in the decoupled spatial and spectral regularization approach
of the (3D + spectral) TV we have the freedom to balance the strength between space and spectral
directions by suitable choices of the parameters α and β. In this way with the (3D + spectral) TV,
we obtain higher quality reconstructions with better contrast and less noise, as seen in bottom
row of figure 9 and red energy curve of figure 10.

(g) PDHG versus SPDHG
In figure 11, we demonstrate the computational benefit of SPDHG compared to the PDHG
algorithm. On a cropped four-dimensional dataset with only five channels and five vertical slices,
we present the spatio-spectral TV reconstructions for these algorithms with respect to the number
of epochs. One epoch is the expected number of iterations for the algorithm to have processed all
the data, i.e. all data subsets once. For PDHG, the full data are used in each iteration, so an epoch
here equals an iteration. On the other hand, for SPDHG an epoch is determined by the number of
data subsets. In our case, we use S = 10 data subsets with balanced sampling, which means that
on average half the iterations call the regularizer and in the other half one of the data subsets is
chosen with uniform probability. Hence, 20 iterations are required on average to process all the
10 data subsets, so an epoch for SPDHG equals 20 iterations.

We run PDHG for 2000 iterations = epochs and SPDHG for 1000 iterations = 50 epochs.
We observe that even after five epochs, a meaningful reconstruction is obtained using the
SPDHG algorithm, whereas in PDHG no structures of the rock are observed. In fact, the SPDHG
reconstruction after five epochs is visually closer to the PDHG reconstruction after 50 epochs. This
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Figure 11. PDHG and SPDHG reconstructions of (5.1) with α = 0.001 for different epochs using only five channels and five
vertical slices. PSNR comparison of the PDHG and SPDHG reconstructions with respect to the PDHG reconstructions after 2000
iterations. Energy channel at 84.38 keV for the 20th vertical slice is presented.

is also verified by the PSNR plot in figure 11. There, we compute for every epoch, the PSNR of the
SPHDG and PDHG reconstructions against the PDHG reconstruction after 2000 epochs, which is
considered as the reference image u∗, that is the converged solution of equation (4.2).

A discussion of the computational advantages of the SPDHG versus the PDHG algorithm
in tomography applications is beyond the scope of this article. Our intention was merely to
demonstrate the CIL implementation of the SPDHG algorithm, which allows researchers to
experiment with accelerated reconstruction of their own problems of interest.

(h) Discussion and conclusion
In this particular rock sample, absorption K-edges are well defined and identifying the elements
from these abrupt changes on the spectrum is relatively easy. However, this is not always
the case, for instance, if there is no prior knowledge of the sample composition, or low
chemical concentration and the sample deposits are on the order of detector voxel size. In such
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cases, K-edges may be completely concealed by the background noise of a channelwise FBP
reconstruction as shown in [6]. Hence, we need to rely on a more sophisticated reconstruction
that has the ability to suppress noise in both the spatial and spectral domains and confidently
identify and quantify the elemental distribution of each material. This is particularly important
when looking to perform further spectral analyses, such as the use of K-edge subtraction (KES),
where we segment elemental phases based on identification of their K-edges. For a detailed task-
based reconstruction quality assessment based on KES analysis, we refer the reader to [6], where
we compare more advanced spatio-spectral reconstruction methods for a biological sample.

6. Conclusions
Multichannel CT imaging opens up many new possibilities in material and life sciences.
Multichannel CT is intrinsically ‘photon-hungry’ because detected photons are shared between
multiple energy or time bins. Therefore, acquired tomographic datasets typically do not provide
sufficient information for high quality reconstruction using traditional FBP-type algorithms. The
absence of effective reconstruction methods and software capable of handling noisy and/or
undersampled multichannel data hamper scientific applications of the technique.

The inverse problem framework provides methods to treat these challenging multichannel
CT data through iterative reconstruction with suitable regularization which efficiently exploits
prior knowledge and inter-channel correlation. CIL implements essential building blocks,
which can explicitly support multichannel reconstruction and four—and higher—dimensional
datasets. Here, we have demonstrated the potential of CIL for multichannel CT data with three
representative case-studies. Starting with a simple colour denoising and inpainting problem,
we illustrated the ability to incorporate various regularization techniques, such as classical
TV, vectorial TV and TGV. We also outlined how a conventional formulation of iterative
reconstruction through the optimization framework is mapped onto CIL objects. In the second
case study, we exploited reconstructions on a dynamic sparse CT framework enforcing different
prior information on spatiotemporal volume. We observed that spatio-temporal TV is able to
remove noise and streak artefacts, but due to loss of contrast, important features are lost. Using a
reference image from data with dense measurements, a structural prior (dTV) is shown to enhance
the reconstructions when very low number of projections are acquired. To highlight the flexibility
of CIL, we constructed both explicit and implicit PDHG to solve the corresponding reconstruction
problems. Finally, in the last case study, we endeavoured to reconstruct an energy-resolved X-ray
CT dataset with high energy resolution. We followed the same regularization strategy as in
the second case study, i.e. a combination of edge preserving prior both in space and spectral
directions, but this time we used a stochastic version of PDHG algorithm to speed-up large-scale
CT reconstruction. Regularization aided better identification of K-edges in the energy-resolved
X-ray CT dataset.

The ability to incorporate and balance various regularization terms in the reconstruction
routine is a promising approach to treat noisy and undersampled multichannel CT data,
especially when using different regularization strength for the spatial and energy domains. It
is widely understood that one of the main challenges of iterative reconstruction is the high
computational cost compared to traditional FBP-type methods. Although the focus of CIL is
on modularity and on enabling the expression of complex optimization problems into working
code, CIL wraps hardware accelerated libraries to perform costly forward- and back-projection
steps and to calculate the proximal operators of regularization and fidelity terms, and there is
a continuous effort to improve performance and resolve computational bottlenecks. In terms of
supported imaging modalities, we can currently handle any tomographic modality which can be
described by the Beer–Lambert law. We also provide interoperability with the Synergistic Image
Reconstruction Framework (SIRF) [14] enabling positron emission tomography and magnetic
resonance imaging reconstruction using CIL. We continue to enrich the library of available
algorithms, regularizers, pre- and post-processing tools along with supported imaging models
and available back-ends.
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