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An Anisotropic Inf-Convolution BV Type Model for Dynamic Reconstruction∗
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Abstract. We are interested in a spatial-temporal variational model for image sequences. The model involves a
fitting data term adapted to different modalities, such as denoising, deblurring, or emission tomog-
raphy. The regularizing term acts as an infimal-convolution type operator that takes into account
the respective influence of space and time variables in a separate mode. We give existence and
uniqueness results and provide optimality conditions via duality analysis.

Key words. spatial-temporal variational regularization, infimal convolution total variation, anisotropic total
variation, optimality conditions

AMS subject classifications. 65D18, 68U10, 65K10

DOI. 10.1137/16M1104937

1. Introduction. In this paper, we examine variational inverse problems for dynamic im-
age reconstruction. As in the context of image restoration, the goal regarding a video restora-
tion is to recover a clean image sequence given a degraded dynamic datum. Certainly, one of
the main differences between image and video restoration is the additional temporal domain
where a collection of images-frames evolves over the time. Besides the spatial structures which
are a significant factor on the output quality of the reconstruction, the time direction has an
important role on the temporal consistency among the frames. Furthermore, in terms of video
applications, one may consider applications inherited from the imaging context and extend
them to the dynamical framework. To name a few, we have dynamic denoising, deblurring,
inpainting, decompression, and emission tomography, such as positron emission tomography
(PET) and magnetic resonance imaging.

The aim of this paper is to study variational regularization models in an infinite dimen-
sional setting defined on a spatial-temporal domain. In particular, given a corrupted image
sequence g, we look for a solution u, in a Banach space X , to the following generic minimization
problem:

(1.1) inf
u∈X
H(Au, g) +N (u).

The first and second terms represent the well-known data-fitting term (fidelity) and the reg-
ularizer, respectively. The former is determined by the nature of degradation, e.g., a trans-
formation through a continuous and linear operator A with the presence of random noise, as
well as the modality of the problem. The latter imposes a certain prior structure (regularity)
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130 M. BERGOUNIOUX AND E. PAPOUTSELLIS

on the solution u. Regarding image restoration, the minimization problem (1.1) has been ex-
tensively used and examined from both theoretical and numerical points of view for different
applications. For instance, we refer the reader to the famous ROF variational model [36],
where the use of functions of bounded variation (BV) and the total variation regularization
(TV) was established in image processing. Moreover, it was analyzed in [1, 44] and several
extensions have been proposed in [15, 8, 12, 16, 24]. Now, concerning variational problems on
a spatial-temporal domain, one can witness significantly less work from a theoretical perspec-
tive compared to a numerical one. Indeed, there is a plethora of numerical algorithms in the
literature for variational video processing. We refer the reader to some of them as [17, 38, 32].

A quite natural approach toward image sequence reconstruction is to apply the minimiza-
tion problem (1.1), acting on every image-frame of the sequence individually. For example, we
use the above problem in order to denoise each frame from a sequence corrupted by Gaussian
noise. We choose a nonsmooth regularizer as the total variation measure over the spatial do-
main Ω ⊂ R2. It is known for the piecewise constant structures imposed to the solution u that
can eliminate efficiently the noise while preserving the edges of the images. It is defined as

(1.2) N (u) = αTVx(u) = sup
{∫

Ω
udivϕdx : ϕ ∈ C1

c (Ω,R2), ‖ϕ‖∞ ≤ α
}

weighted by a positive parameter α and

(1.3) ‖ϕ‖∞ = ess sup
x∈Ω

|ϕ(x)|r, |ϕ(x)|r =

{√
ϕ2

1(x) + ϕ2
2(x), r = 2, (isotropic)

max{|ϕ1(x)|, |ϕ2(x)|}, r =∞, (anisotropic).

This parameter is responsible for a proper balancing between the regularizer and the fidelity
term, which is fixed as H(u, g) = 1

2 ‖u− g‖
2
L2(Ω) in this case. Although this solution produces

a satisfying result on the spatial domain, it does not take into account the interaction between
time and space, and some time artifacts, e.g., flickering, will be introduced. Note that one
can use the anisotropic norm instead of an isotropic one in (1.3). Although these norms are
equivalent in a finite dimensional setting, they have different effects on the corresponding
computed minimizers. In the isotropic case, sharp corners will not be allowed in the edge set,
and smooth corners prevail. On the other hand, corners in the direction of the unit vectors
are favored in the anisotropic variant. For more details, we refer the reader to [29, 21, 34] on
the properties and differences between these two corresponding minimizers.

A more sophisticated path, referred as three-dimensional (3D) denoising, is to extend the
domain, taking into account the time activity, and treat an image sequence as a 3D volume
where the time plays the role of the third variable. In this case, we write

(1.4) N (u) = TVα(t,x)(u) = sup
{∫

Q
udivαϕdx dt : ϕ ∈ C1

c (Q,R3), ‖ϕ‖∞ ≤ 1
}
,

where Q = T ×Ω ⊂ R3 is the 3D spatial-temporal domain with T = (0, T ). Here, we have a
positive vector α = (α1, α2) acting on the space and time, respectively, with

divα = α1

(
∂

∂x1
+

∂

∂x2

)
+ α2

∂

∂t
= α1divx + α2divt,
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 131

and the TV smoothness is applied along both the spatial and the temporal directions. An
obvious question that rises in this particular setting is the correlation between the space
and time. Video regularization approaches as in [17, 25, 30] combine spatial and temporal
domains under the corresponding dynamic isotropic norm ‖ϕ‖∞ = ess sup(t,x)∈Q |ϕ(t, x)|2.
Hence, space and time are interacting with each other and contribute under some weight
parameters to the TV regularizer.

However, this choice of norm is not very accurate concerning the preservation of spatial
and temporal discontinuities. Using the anisotropic norm, ‖ϕ‖∞ = ess sup(t,x)∈Q |ϕ(t, x)|∞,
where space and time are not correlated, has the advantage of focusing on the discontinuities
of Ω and T in separate modes, respectively, and preserving spatial and temporal details more
accurately. In particular, we can decompose (1.4) into a spatial and a temporal total variation
(see [2]) and write

(1.5)

TVα(t,x)(u) = T Vα1
x (u) + T Vα2

t (u) with

T Vα1
x (u) = sup

{∫
Q
uα1

(
∂ϕ1

∂x1
+
∂ϕ2

∂x2

)
dx dt : ϕ ∈ C1

c (Q,R3),

max
{√

ϕ2
1(t, x) + ϕ2

2(t, x)
}
≤ 1
}
,

T Vα2
t (u) = sup

{∫
Q
uα2

∂ϕ3

∂t
dx dt : ϕ ∈ C1

c (Q,R3),max{|ϕ3(t, x)|} ≤ 1
}
.

This type of decomposition has already been proposed for several applications, such as dy-
namic denoising, segmentation, and video decompression, and the reader is referred to [43,
38, 26, 17]. Although this paper is rather theoretical, we would like to intrigue the reader
with a simple numerical example. In Figure 1, we have an image sequence of five frames of
several geometrical objects moving in different directions and speed under a constant back-
ground. This is corrupted by Gaussian noise. In order to compare between isotropic (1.4) and

Figure 1. Image sequence of five frames and its noisy version corrupted with Gaussian noise. Geometrical
shapes are moving in different directions with different moving speed.
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132 M. BERGOUNIOUX AND E. PAPOUTSELLIS

(a) Frame 1 (b) Frame 3 (c) Frame 4

Figure 2. First row: true sequence; second row: isotropic TV; third row: anisotropic TV. We present frames
1, 3, and 5. The parameters are optimized such that ||solutionISTV − truth||2 = ||solutionANTV − truth||2 =
25.9559 with αISTV1 = αANTV1 = 0.5, αISTV2 = 0.05, αANTV2 = 0.0501.

anisotropic (1.5) total variation spatial-temporal regularization, we select the parameters of
the isotropic/anisotropic TV such that in both cases they will have the same distance for the
ground truth (as in PSNR), namely, ||solutionISTV − truth||2 = ||solutionANTV − truth||2.

In Figure 2, we present the surface plots of three of the five frames of the correspond-
ing regularized solutions of (1.1) with the squared L2 norm fidelity term. We observe that
anisotropic regularization is able to preserve the geometry of these objects.

Motivated by (1.5), we proceed with a further decomposition in terms of the test function
ϕ and define the following decoupled spatial-temporal total variation regularization:

(1.6) N (u) = α1

∫ T

0
TVx(u(t, ·)) dt+ α2

∫
Ω

TVt(u(·, x)) dx,

where TVx is given by (1.2) and and TVt(u) is defined similarly (see (2.2)). They denote
the spatial total variation for every t ∈ T and the temporal total variation for every x ∈ Ω,D
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 133

respectively. Note that in the above formulations the test functions are defined in Ω and T ,
respectively.

Nonsmooth regularization methods introduce different kind of modeling artifacts. As we
discussed above, a total variation regularizer tends to approximate nonconstant noisy regions
with piecewise constant structures leading to the staircasing effect. This aspect is certainly
inherited in the dynamic framework and produces the flickering effect due to the staircasing
along the temporal dimension. In addition, one may observe some ghost artifacts on moving
objects, i.e., where certain features are overlapping between two consecutive frames. This is
due to the strong temporal regularization, namely, when the ratio α1

α2
is relatively small. In

order to overcome this kind of modeling artifact, a combination of nonsmooth regularizers is
used via the concept of the infimal convolution:

(1.7) N (u) = F1#F2(u) = inf
v∈X

F1(u− v) + F2(v).

This regularization functional is able to favor reconstructions with a relatively small F1 or F2
contribution. In the imaging context, this is introduced in [15], where a first- and second-order
TV-based regularizers are combined in order to reduce the staircasing phenomenon. Under
this regularizer, the corresponding solution u of (1.1) promotes both piecewise constant and
smooth structures due to the presence of higher-order derivatives and in fact provides a certain
decomposition between piecewise constant and smooth regions. On the other hand, Holler and
Kunisch in [25] extend the notion of infimal convolution in the context of dynamic processing.
In such a setting, they propose the use of total variation functionals as in (1.4) with an
isotropic relation on the spatial and temporal regularities. As in the imaging framework, one
can decompose an image sequence into a sequence that captures spatial information and a
sequence that encodes temporal activity. This type of spatial-temporal regularizer will be
discussed in section 3 under the anisotropic formulation (1.6) of separate action in space and
time. Specifically, we propose the following infimal convolution total variation regularization
for an image sequence u. Given two positive vectors λ = (λ1, λ2) and µ = (µ1, µ2),

(1.8)
N (u) = Fλ#Fµ(u) = inf

v∈X

∫ T

0
λ1TVx(u− v)(t) dt+

∫
Ω
λ2TVt(u− v)(x) dx

+
∫ T

0
µ1TVx(v)(t) dt+

∫
Ω
µ2TVt(v)(x) dx.

Depending on the choice of λ, µ, one can enforce a certain regularity and focus on either space
or time for the image sequences u− v and v. For example, if one selects that λ1 = µ2 = κ and
λ2 = µ1 = 1 with κ > 1, then the first two terms impose a TV smoothness more on the space
direction than in time for the u− v term. For the other two terms, the TV smoothness acts
conversely for the v component. Therefore, it is a matter of proper balancing which is tuned
automatically via the infimal convolution and highlights the cost on either space or time.
The choice of parameters will be discussed in section 3. We would like to mention that the
functionals in (1.7) are not necessarily total variational functionals, and other combinations
or high-order functionals may be used; see, for instance, [39, 7].

Finally, we would like to emphasize the nature of the positive parameters defined above.
In the definitions (1.4), (1.5), and (1.8), we use parameters that are constant over the time do-
main. Equivalently, every frame is penalized with the same constant. This is a fair assumptionD
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134 M. BERGOUNIOUX AND E. PAPOUTSELLIS

when the level of noise is assumed to be constant over time. However, in real-world applica-
tions, this is not always the case. There are situations when the noise is signal-dependent;
e.g., Poisson noise and the noise-level variates over time. In dynamic PET imaging and in
particular in list-mode PET (see [42]), data can be binned into sinograms, allowing frame
durations to be determined after the acquisition. Under this approach, one has to choose
between longer scans with good counting statistics and shorter scans that are noisy but pre-
serving temporal resolution. A usual and fair choice is to select shorter scans in the beginning
where there is a high activity of the radioactive tracer and longer scans at the end. For exam-
ple, a 50-minute acquisition in list mode rat-brain scans is rebinned into 27 frames under the
following scheme: 4x10s, 4x20s, 4x60s, 14x180s, 1x120s; see [40]. Hence, our goal is to allow
time-dependent parameters on the above regularizers that can not only handle different levels
of noise per frame (first term) but also balance the temporal activity in terms of a nonuniform
time domain discretization (second term), i.e.,

(1.9) N (u) =
∫ T

0
α1(t)TVx(u)(t) dt+

∫
Ω

TVt(α2(t)u)(x) dx.

Outline of the paper : The paper is organized as follows. We first recall some general
properties of functions of BV and fix the notations in terms of the dynamic framework. We
continue with the definition of the regularizers used in this paper, such as a weighted version
of the spatial-temporal total variation as well as its extension to the infimal convolution. In
addition, we define also the data-fitting terms that are suitable for different applications. In
section 4, we examine the well-posedness (existence, uniqueness, and stability) of the asso-
ciated variation problem specifically for the infimal convolution regularizer and conclude in
section 5 with the corresponding optimality conditions. Finally, we would like to mention that
the nature of this paper is rather theoretical, and we do not address any numerical issues.
This will be done in a forthcoming paper.

2. Preliminaries. Let us denote u : T ×Ω → R, an image sequence defined on an open
bounded set Ω ⊂ Rd with smooth boundary representing the space domain with d ≥ 1 and
T = (0, T ), T > 0, which represents the temporal domain. In this section, we recall some
basic notations related to functions of BV extended to the spatial-temporal context. In order
to distinguish between spatial and temporal domains, we define the following spaces:

(2.1)

L1(T ; BV(Ω))= {u : T × Ω→ R | u(t, ·) ∈ BV(Ω) a.e. t ∈ T
and t 7→ TVx(u)(t) ∈ L1(T )},

L1(Ω; BV(T ))= {u : T × Ω→ R | u(·, x) ∈ BV(T ) a.e. x ∈ Ω

and x 7→ TVt(u)(x) ∈ L1(Ω) }.

Here, TVx and TVt stand for the spatial and temporal total variation for every t ∈ T and
x ∈ Ω, respectively. In particular, we have
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 135

(2.2)
TVx(u)(t) = sup

{∫
Ω
ξ(x)u(t, x) dx | ξ ∈ Kx

}
,

TVt(u)(x) = sup
{∫ T

0
ξ(t)u(t, x) dt | ξ ∈ Kt

}
,

with the corresponding sets

(2.3)

Kx :=
{
ξ = divx(ϕ) | ϕ ∈ C1

c (Ω,Rd), ‖ϕ‖∞,x ≤ 1
}
, ‖ϕ‖∞,x = ess sup

x∈Ω
|ϕ(x)|2

Kt :=
{
ξ =

dϕ

dt
| ϕ ∈ C1

c (T ,R), ‖ϕ‖∞,t ≤ 1
}
, ‖ϕ‖∞,t = ess sup

t∈T
|ϕ(t)|,

where divx is the divergence operator on the spatial domain and | · |2 is the isotropic-Euclidean
norm in space. Finally, we define the space of functions of BV on the spatial-temporal domain
Q, acting isotropically in these two directions, i.e.,

(2.4)

BV(Q) =
{
u ∈ L1(Q) | TV(u) <∞

}
, where

TV(t,x)(u) = sup
{∫

Q
ξ(t, x)u(t, x) dx dt | ξ ∈ K

}
and

K : =
{
ξ = div(t,x)(ϕ) | ϕ ∈ C1

c (Q,R× Rd), ‖ϕ‖∞ ≤ 1
}
,

‖ϕ‖∞ = ess sup
(t,x)∈Q

|ϕ(t, x)|2.

In the following, we drop the index (t, x) in the total variation on Q notation so that TV stands
for TV(t,x). Note that div(t,x) = ∂

∂t + divx. As we pointed out in the introduction, one may
consider an equivalent anisotropic norm using for any ϕ = (ϕ0, ϕ1, . . . , ϕd) ∈ C1

c (Q,R × Rd)
: |ϕ(t, x)|∞ = max{

√∑d
i=1 ϕ

2
i (t,x),|ϕ0(t,x)|} ≤ 1, and all the following results are still true.

In the following theorem (see [3, 5]), we recall some useful properties on the BV(O) space,
where O is a bounded, open set of RN (practically O = Ω with N = d or O = Q with
N = d+ 1.)

Theorem 2.1. Let O ⊂ RN , N ≥ 1. The space BV(O) endowed with the norm

‖v‖BV(O) := ‖v‖L1(O) + TV(v)

is a Banach space.
(a) For any u ∈ BV(O) there exists a sequence un ∈ C∞(Ō) such that

un → u in L1(O) and TV(un)→ TV(u).

(b) The mapping u 7→ TV(u) is lower semicontinuous from BV(O) endowed with the
L1(O) topology to R+.
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(c) BV(O) ⊂ Lp(O) with continuous embedding for 1 ≤ p ≤ N
N−1 , and we have the

Poincaré–Wirtinger inequality (Remark 3.50 of [3]): there exists a constant CO only
depending on O such that for 1 ≤ p ≤ N

N−1

∀u ∈ BV(O), ‖u− ū‖Lp(O) ≤ CO TV(u),

where ū is the mean value of u on O.
(d) BV(O) ⊂ Lp(O) with compact embedding for 1 ≤ p < N

N−1 .

The lemma below is essential for the forthcoming analysis and relates the spaces defined by
(2.1) and (2.4). It is based on the definitions above as well as of some tools in the proof of
[22, Theorem 2, section 5.10.2]. A similar result (but in a different context) can be found in
[9, Lemma 3].

Lemma 2.2. We have L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )) = BV(Q). Moreover, for every u ∈
BV(Q),

(2.5) TV(u) ≤
∫ T

0
TVx(u)(t)dt+

∫
Ω

TVt(u)(x)dx ≤
√

2 TV(u).

Proof. We start with the first inclusion:

L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )) ⊂ BV(Q).

Let u ∈ L1(T ; BV(Ω))∩ L1(Ω; BV(T )). For any ξ ∈ K, there exists ϕ = (ϕ1, ϕ2) ∈ C1
c (Q,R×

Rd) such that ‖ϕ‖∞ ≤ 1 and

ξ =
∂ϕ1

∂t
+ divxϕ2 := ξ1 + ξ2.

For every t ∈ T , ξ2(t, ·) : x 7→ ξ2(t, x) belongs to Kx so that∫
Ω
ξ2(t, x)u(t, x) dx ≤ TVx(u)(t) a.e. t ∈ T

and ∫ T

0

∫
Ω
ξ2(t, x)u(t, x) dx dt ≤

∫ T

0
TVx(u)(t)dt.

Similarly, ∫
Ω

∫ T

0
ξ1(t, x)u(t, x) dt dx ≤

∫
Ω

TVt(u)(x)dx.

Then for every ξ ∈ K,∫
Q
ξ(t, x)u(t, x) dt dx =

∫ T

0

∫
Ω
ξ2(t, x)u(t, x) dx dt+

∫
Ω

∫ T

0
ξ1(t, x)u(t, x) dt dx

≤
∫ T

0
TVx(u)(t)dt+

∫
Ω

TVt(u)(x)dx.
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 137

The right-hand side is finite independently of ξ since u ∈ L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )).
Therefore, u ∈ BV(Q) and

TV(u) ≤
∫ T

0
TVx(u)(t)dt+

∫
Ω

TVt(u)(x)dx.

Let us prove the converse inclusion. We first assume that u ∈W1,1(Q). Then, using Fubini’s
theorem, we get t 7→

∫
Ω |∇t,xu|(t, x) dx ∈ L1(T ) and x 7→

∫ T
0 |∇t,xu|(t, x) dt ∈ L1(Ω). Here,

we write |∇t,xu|2 =
√

( ∂u∂t )
2
+
∑d
i=1

(
∂u
∂xi

)2
and

|∇t,xu(t, x)|2 ≤ |∇xu(t, x)|2 + |∇tu(t, x)| ≤
√

2 |∇t,xu(t, x)|2.

Therefore, t 7→
∫

Ω |∇xu(t, x)|2 dx ∈ L1(T ), x 7→
∫ T

0 |∇tu(t, x)| dt ∈ L1(Ω), and u ∈
L1(T ; BV(Ω)) ∩ L1(Ω; BV(T )) with

TV(u) ≤
∫ T

0
TVx(u)(t) dt+

∫
Ω
TVt(u)(x) dx ≤

√
2 TV(u).(2.6)

We now consider u ∈ BV(Q) and show that u ∈ L1(T ; BV(Ω)). As W1,1(Q) is dense in
BV(Q) in the sense of the intermediate convergence [5], there exists a sequence of functions
uk ∈ W1,1(Q) such that uk converges to u in L1(Q) and TV(uk) → TV(u). From Fubini’s
theorem, we infer that uk(t, ·) converges to u(t, ·) in L1(Ω) for almost every t ∈ T and that
uk(·, x) converges to u(·, x) in L1(T ) for almost every x ∈ Ω. Moreover, TV(uk)→ TV(u) is
bounded. Using (2.6) and Fatou’s lemma, we have that

(2.7)

∫ T

0
lim inf
k→∞

TVx(uk)(t) dt+
∫

Ω
lim inf
k→∞

TVt(uk)(x) dx

≤ lim inf
k→∞

(∫ T

0
TVx(uk)(t) dt+

∫
Ω

TVt(uk)(x) dx
)
≤
√

2 TV(u).

Then lim infk→∞TVx(uk)(t) < ∞ a.e t ∈ T and lim infk→∞TVt(uk)(x) < ∞ a.e x ∈ Ω.
Now, for a.e. t ∈ T , we have that

∀ξ ∈ Kx,

∫
Ω
uk(t, x)ξ(x) dx ≤ TVx(uk)(t) .

Hence, ∫
Ω
u(t, x)ξ(x) dx = lim

k→+∞

∫
Ω
uk(t, x)ξ(x) dx ≤ lim inf

k→∞
TVx(uk)(t) <∞

and
TVx(u)(t) = sup

ξ∈Kx

∫
Ω
u(t, x)ξ(x) dx ≤ lim inf

k→∞
TVx(uk)(t) <∞.

This means that u(t, ·) ∈ BV(Ω) a.e. t ∈ T . In a similar way, we have that u(·, x) ∈ BV(T )
a.e x ∈ Ω since

TVt(u)(x) = sup
ξ∈Kt

∫ T

0
u(t, x)ξ(t) dt ≤ lim inf

k→∞
TVt(uk)(x) <∞.
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Finally, using (2.7), we get∫ T

0
TVx(u)(t) dt+

∫
Ω

TVt(u)(x) dx

≤
∫ T

0
lim inf
k→∞

TVx(uk)(t) dt+
∫

Ω
lim inf
k→∞

TVt(uk)(x) dt ≤
√

2 TV(u).

This ends the proof, and the inequality (2.6) is also valid for every u ∈ BV(Q).

Remark 2.3. Note that equation (2.6) depends on the choice of the R2-norm that appears
in the definition of the total variation. If we choose another (equivalent) R2-norm, (2.6)
remains valid with a different constant (instead of

√
2). This does not change the theoretical

analysis. However, the choice of the norm is an important numerical issue, as we have pointed
it out in the introduction.

Remark 2.4. The second inclusion of the previous lemma can be seen as a generalization of
a function of BV “in the sense of Tonelli” denoted by TBV; see [18, 4]. For instance, a function
of two variables h(x, y) is TBV on a rectangle [a, b]× [c, d] if and only if TVxh(·, y) <∞ for a.e
y ∈ [c, d], TVyh(x, ·) <∞ for a.e x ∈ [a, b], TVxh(·, y) ∈ L1([a, b]), and TVyh(x, ·) ∈ L1([c, d]).

3. The variational model. As already mentioned in the introduction, we are interested
in the following variational problem:

(3.1) inf
u∈X

H(g,Au) +N (u),

where X = BV(Q). In this section, we describe the choice of the regularizer term N (u) as
well as the data-fitting term H(g,Au). Recall that Ω ⊂ Rd with d ≥ 1, T = (0, T ) with T > 0,
and Q = T ×Ω ⊂ Rd+1.

3.1. Spatial-temporal regularizer. In this section, we define the spatial-temporal total
variation and infimal convolution total variation regularizers weighted by time-dependent
parameters. Let α be a positive time-dependent weight function α ∈ W1,∞(T ). For the
spatial and temporal variations, we write Φα1(u) (in space) as the L1(T ) norm of t 7→
α1(t)TVx(u)(t), i.e.,

(3.2) ∀u ∈ L1(T ; BV(Ω)), Φα1(u) =
∫ T

0
TVx[α1u](t) dt =

∫ T

0
α1(t)TVx[u](t) dt,

and, for temporal penalization, Ψα2 as

(3.3) ∀u ∈ L1(Ω; BV(T )), Ψα2(v) =
∫

Ω
TVt[α2u](x) dx.

Note that Φα1 , Ψα2 are convex functionals and that the time-dependent parameters α1, α2
will satisfy

(3.4)
{

α1, α2 ∈W1,∞(T ) and there exists
αmin > 0 s.t 0 < αmin ≤ αi(t) a.e. t ∈ T , i = 1, 2.

Therefore, using Lemma 2.2 and equations (3.2), (3.3), we have the following.D
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Definition 3.1. Let be X = BV(Q) and α = (α1, α2) that satisfies (3.4). We define the
spatial-temporal total variation regularizer Fα on X as

(3.5) Fα(u) = Φα1(u) + Ψα2(u),

that is,

Fα(u) =
∫ T

0
TVx[α1u](t) dt+

∫
Ω

TVt[α2u](x) dx.

Moreover, for the spatial-temporal infimal convolution total variation regularization, we fix
λ = (λ1, λ2) and µ = (µ1, µ2) that satisfy (3.4) and write

∀u ∈ X , Fλ#Fµ(u) = inf
v∈X

Fλ(u− v) + Fµ(v).

Proposition 3.2 (lower semicontinuity of Fα). For every α = (α1, α2) that satisfies (3.4),
the functionals Φα1 and Ψα2 are lower semicontinuous on L1(T ; BV(Ω)) and L1(Ω; BV(T )),
respectively, with respect to the L1(Q) topology. In particular, the functional Fα is lower semi-
continuous on BV(Q) with respect to the L1(Q) topology. As a consequence, these functionals
are lower semicontinuous on BV(Q) for any Lp(Q) topology with p ≥ 1.

Proof. We start with the lower semicontinuity of Φα1 . The proof is similar for the lower
semicontinuity of Ψα2 . Let un ∈ L1(T ; BV(Ω)) such that un → u in L1(Q).

If lim infn→+∞Φα1(un) = +∞, then the lower semicontinuity inequality is obviously sat-
isfied.

Otherwise, one can extract a subsequence (still denoted un) such that supn Φα1(un) = supn∫ T
0 TVx[α1un](t) dt < +∞. Fatou’s lemma applied to the sequence TVx(α1un) gives∫ T

0
lim inf
n→+∞

TVx[α1un](t) dt ≤ lim inf
n→+∞

∫ T

0
TVx[α1un](t) dt = lim inf

n→+∞
Φα1(un) < +∞.

Moreover, for a.e. t ∈ T , we have

∀ξ ∈ Kx, TVx[α1un](t) ≥
∫

Ω
α1(t)ξ(x)un(t, x) dx.

As un strongly converges to u in L1(Q), un(t, x) → u(t, x) in L1(Ω) a.e. t ∈ T up to a
subsequence. Therefore,

∀ξ ∈ Kx, a.e. t ∈ (0, T ), lim inf
n→+∞

TVx[α1un](t) ≥
∫

Ω
α1(t)ξ(x)u(t, x) dx,

and for almost every t ∈ T ,

lim inf
n→+∞

TVx[α1un](t) ≥ sup
ξ∈Kx

∫
Ω
α1(t)ξ(x)u(t, x) dx = TVx[α1u](t).

Finally,

Φα1(u) =
∫ T

0
TVx[α1u](t) dt ≤

∫ T

0
lim inf
n→+∞

TVx[α1un](t) dt ≤ lim inf
n→+∞

Φα1(un).

Eventually, the functional Fα is lower semicontinuous on BV(Q) as the sum of two lower
semicontinuous functionals.D
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The next result provides a relation between the total variation regularization which cor-
relates space and time and the functional Fα where these directions are treated separately. It
is a key result to prove well-posedness results in the forthcoming analysis.

Theorem 3.3. Assume that α = (α1, α2) satisfies (3.4). Then there exists positive con-
stants C−α , C

+
α depending on α such that for every u ∈ BV(Q),

(3.6) C−αTV(α2u) ≤ Fα(u) ≤ C+
αTV(α2u).

Proof. Let αmax = max{‖α1‖L∞(T ), ‖α2‖L∞(T )} and note that Φα1(u) = Φ1(α1u) for every
u ∈ BV(Q). Then we have that

αmin
αmax

Φ1(α2u) ≤ Φα1(u) ≤ αmax
αmin

Φ1(α2u) ∀u ∈ BV(Q).

Since Fα(u) = Φα1(u) + Ψα2(u) = Φ1(α1
α2
α2u) + Ψ1(α2u), we conclude that

αmin
αmax

Φ1(α2u) + Ψ1(α2u) ≤ Fα(u) ≤ αmax
αmin

Φ1(α2u) + Ψ1(α2u)⇒
αmin
αmax

(Φ1(α2u) + Ψ1(α2u)) ≤ Fα(u) ≤ αmax
αmin

(Φ1(α2u) + Ψ1(α2u))

since αmin
αmax

≤ 1 and αmax
αmin

≥ 1. Using (2.5) in Lemma 2.2, we obtain

(3.7)
αmin
αmax

TV(α2u) ≤ Fα(u) ≤
√

2
αmax
αmin

TV(α2u).

Here C−α = αmin
αmax

and C+
α =

√
2 αmax
αmin

.

In (3.6), we observe that the time-dependent parameter α1 that acts on the spatial domain
of Fα does not contribute to the correlated spatial-temporal total variation. In terms of the
infimal convolution regularizer, a similar result is true when a certain assumption on the
time-dependent parameters is imposed.

Proposition 3.4. Let λ = (λ1, λ2) and µ = (µ1, µ2) be time-dependent positive parameters
that satisfy (3.4). Additionally, let κ > 0 such that µ2 = κλ2. Then there exists constants
C1, C2 > 0 depending on λ, µ and κ such that

(3.8) ∀u ∈ BV(Q), C1TV(λ2u) ≤ Fλ#Fµ(u) ≤ C2TV(λ2u).

Proof. Let u ∈ BV(Q). Then for any v ∈ BV(Q) using Theorem 3.3, we have that

Fλ(u− v) + Fµ(v) ≥ C−λTV(λ2(u− v)) + C−µTV(µ2v) = C−λTV(λ2(u− v)) + κC−µTV(λ2v)

≥ min
{
C−λ , κC

−
µ

}
(TV(λ2(u− v)) + TV(λ2v)) ≥ C1TV(λ2u);

passing to the infimum over v ∈ BV(Q) and obtaining the left-hand side of (3.8). On the
other hand, we have that

inf
v∈BV(Q)

Fλ(u− v) + Fµ(v) ≤ Fλ(u) ≤ C+
λTV(λ2u) = C2TV(λ2u).
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Remark 3.5 (choice of parameters). The assumption that there exists κ > 0 such that
µ2 = κλ2 is a technical assumption and crucial for our analysis that follows. However, it
is not too restrictive. Under this setting, one has to tune four parameters in total. Yet
we need to take into account the spatial and temporal regularization for each term. For
instance, if one considers λi, µi, i = 1, 2, which satisfy (3.4) and λ1 > λ2, µ1 > µ2, it is
immediate that only a spatial regularization is enforced and vice versa. In order to employ
an infimal convolution approach, a certain relation between λ, µ has to be imposed. For
instance, one choice could be λ1 = µ2 = λ(t), λ2 = µ1 = 1 − λ(t) with 0 < λ(t) < 1
for every t ∈ T ; see, for instance, [7]. However, the assumption µ2 = κλ2 may be not
satisfied in that case except if we choose constant parameters. One could choose instead
λ1(t), λ2(t) ∈ (λmin, 1), λ2(t) < λ1(t), µ1(t) = 1−λ1(t), and µ2(t) = κλ2(t) with κ > 1−λmin

λmin
.

In that case, we have λ1 > λ2 and µ1 < µ2. In general, the choice of parameters should follow
a specific rule in order to avoid only spatial and only temporal regularization.

The following is an immediate result when we consider constant parameters with respect
to time.

Corollary 3.6. Assume α,λ and µ are positive constant parameters. Then we have the
following relations for every u ∈ BV(Q):

αmaxC
−
αTV(u) ≤ Fα(u) ≤ αminC+

αTV(u)
λminC1TV(u) ≤ Fλ#Fµ(u) ≤ λmaxC2TV(u),

where αmin = min {α1, α2} and αmax = max {α1, α2} are, respectively, for λmin and λmax.

Proof. Recall that relation (2.5) gives

TV(u) ≤ F1(u) =
∫ T

0
TVx(u)(t) dt+

∫
Ω

TVt(u)(x) dx ≤
√

2TV(u).

Next, we get

αmaxC
−
αTV(u) =

αmaxαmin
αmax

TV(u)

= αminTV(u)

≤ αmin
(∫ T

0
TVx(u)(t) dt+

∫
Ω

TVt(u)(x) dx
)

≤ α1

∫ T

0
TVx(u)(t) dt+ α2

∫
Ω

TVt(u)(x) dx = Fα(u).

Similarly,

αminC
+
αTV(u) =

√
2
αminαmax
αmin

TV(u)

=
√

2αmaxTV(u)

≥ αmax
(∫ T

0
TVx(u)(t) dt+

∫
Ω

TVt(u)(x) dx
)

≥ α1

∫ T

0
TVx(u)(t) dt+ α2

∫
Ω

TVt(u)(x) dx = Fα(u).

The second inequality is a direct consequence of Proposition 3.4.D
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3.2. Fitting data term. In this section, we describe the possible choices of the data-
fitting term, depending on the degradation of the input dynamic datum g as well as the
linear operator A. Our setting is quite general and can be applied to any video denoising and
deblurring application, for instance, or even dynamic emission tomography, such as PET. We
begin with two separate cases in terms of the linear operator A:

Case (1): A = A.

We consider a linear and continuous operator with the following assumptions:

(i)A ∈ L(Lp(Q),Lq(Q)) with 1 < p ≤ d+1
d
, 1 ≤ q <∞;

(ii)AχQ 6= 0;(3.9)
(iii)A(α(t)u) = α(t)A(u), a.e. t ∈ T , for any positive time-dependent parameter α.

Condition (ii) yields that A does not annihilate constant functions, which is an important tool
to derive existence results. Condition (iii) is obviously satisfied if α is a positive constant.
However, we require more: we need that a one-homogenous property holds for any positive
time-dependent function t 7→ α(t). This may appear restrictive, but it still allows us to
consider an identity operator for A: this is the case when we deal with denoising. This
includes also spatial deblurring processes. Indeed, in that case, we define A as a spatial
convolution operator. Precisely, we may consider Au := h ∗ u, where h is a spatially blurring
kernel that remains constant over the time domain. Consequently, we get

A(α(t)u(t, x)) = α(t)A(u(t, x)) = α(t)(h(x) ∗ u(t, x)).

Next, we may define

(3.10) H(g,Au) =
1
q
‖Au− g‖qLq(Q) with g ∈ Lq(Q)

as our data-fitting term. This is suitable for dynamic data corrupted by noise that follows
Gaussian distribution (q = 2) or impulse noise (q = 1), for example; see also [10]:

Case (2): A = R.

Here, we consider a linear operator related to emission imaging. The dynamic data that
we obtained during a PET scan, for instance, are connected through an integral (projection)
operator known as the Radon transform R. For every t ∈ T , we write

(3.11)
(
Ru(θ, s)

)
(t) =

∫
x·θ=s

u(t, x) dx,

where
{
x ∈ Rd : x · θ = s

}
is the hyperplane perpendicular to θ ∈ Sd−1 with distance s ∈ R

from the origin. For t ∈ T ,
(
Ru(θ, s)

)
(t) lies on

{
(θ, s) : θ ∈ Sd−1, s ∈ R

}
, a cylinder of

dimension d, and is often referred as projection space or sinogram space. In the dynamic
framework, we set Σ = T ×

{
(θ, s) : θ ∈ Sd−1, s ∈ R

}
, and the Radon transform is a continuous

linear operator withD
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 143

(3.12) R : L1(Q)→ L1(Σ), ‖Ru‖L1(Σ) ≤ C ‖u‖L1(Q) .

We refer the reader to [31] for general continuity results of the Radon transform in Lp spaces.
Furthermore, if p ≥ d+1

d , then the Radon transform is Lp discontinuous since the function

u(x) = |x|−
d+1
p 1

log(|x|) belongs to Lp(Q) for x ∈ Q but is not integrable over any hyperplane;
see [28, Theorem 3.32].

During the PET acquisition process, a certain number of events, e.g., photon emissions,
are collected by the scanner (detectors) and organized into the so-called temporal bins g(θ, s, t)
for every t ∈ T . The associated noise in those data is called photon noise due to the ran-
domness in the photon counting process and in fact obeys the well-known Poisson probability
distribution. For this kind of noise, we use the Kullback–Leibler divergence (see [10, 27]),
DKL : L1(Σ)× L1(Σ)→ R+ ∪ {+∞}, defined as

(3.13) DKL(w1, w2) =


∫

Σ

(
w1 log

(
w1

w2

)
− w1 + w2

)
dx dt ∀w1 ≥ 0, w2 > 0 a.e.

+∞ otherwise.

This is in fact the Bregman distance of the Boltzmann–Shannon entropy; see [33]. We briefly
recall some of the basic properties of the KL-functional which can be found in [11, 33] and
will be used later.

Lemma 3.7. The following properties hold true:
(a) DKL(w1, w2) is nonnegative and equal to 0 if and only if w1 = w2.
(b) The function (w1, w2) 7→ DKL(w1, w2) is convex.
(c) For fixed w1 ∈ L1

+(Σ) (resp. w2 ∈ L1
+(Σ) ), the function DKL(w1, ·) (resp. DKL(·, w2))

is weakly lower semicontinuous with respect to L1(Σ)) topology.
(d) For every w1, w2 ∈ L1

+(Σ),

(3.14) ‖w1 − w2‖2L1(Σ) ≤
(

2
3
‖w1‖L1(Σ) +

4
3
‖w2‖L1(Σ)

)
DKL(w1, w2).

In what follows, we fix w1 = g as the dynamic datum. Assume that

(3.15) g ∈ L∞(Σ),

and set

(3.16) ∀w ∈ L1(Σ), H(g, w) =


∫

Σ
w − g logw dθ ds dt if w > 0 and logw ∈ L1(Σ)

+∞ else.

With the above definition, we have

(3.17) DKL(g, w) = H(g, w)−H(g, g).

As we deal with the minimization problem (3.1), we can neglect the terms that are independent
of w. Indeed, the H(g, g) term does not count on the minimization problem (3.1). Let usD
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mention that the domain of above expression is the cone of positive functions whose log belongs
to L1(Σ) and that H(g, w) = +∞ if w vanishes on a subset of Σ of non-null measure or if
logw /∈ L1(Σ). The boundedness assumption (3.15) is true from the practical point of view
since we deal with a finite acquisition time.

Lemma 3.8. The Radon transform R satisfies (3.9) (ii) and (iii).

Proof. Due to the definition of the Radon transform (3.11), we clearly have

R(α(t)u) = α(t)R(u).

Moreover, the Radon transform is injective [28, Theorem 2.57] so that it does not annihilate
constant functions, and relation (3.9) (ii) is ensured.

To conclude, we define

(3.18) H(g,Ru) =
∫

Σ
(Ru− g logRu) dθ ds dt,

whose domain is

(3.19) D :=
{
u ∈ L1(Q) | Ru > 0 and logRu ∈ L1(Σ)

}
,

as our data-fitting term. Note that D ⊂ L1
+(Q) since u ≥ 0 a.e. implies that Ru ≥ 0 a.e. As

a direct consequence of Lemma 3.7 and the definitions above, we get a lower semicontinuity
result for H. Precisely, for every sequence (un) ∈ D that strongly converges to u for the L1(Q)
topology, we have

H(g,Ru) ≤ lim inf
n→+∞

H(g,Run).

Remark 3.9. Though we are mainly interested in the Radon transform case, one could
replace R with any operator that satisfies (3.9) as in Case 1. This may be suitable for Poisson
denoising and deblurring.

4. Well-posedness results. In this section, we are interested in the well-posedness of
the minimization problem (3.1) for the regularizers described in section 3.1 and the different
choices of the data-fitting term in (3.10) and (3.18). We focus on the infimal convolution
total variation regularizer case i.e., N (u) := Fλ#Fµ(u). In the case of the total variation
regularizer, the forthcoming analysis is similar, and most of the proofs are the same with
minor adaptations. We prove well-posedness (existence, uniqueness, and stability) via the
direct method of calculus of variations for

(P) inf
u∈BV(Q)

E(u),

where

(4.1) E(u) := H(g,Au) + Fλ#Fµ(u).

In particular, we need the lower semicontinuity condition to be true for both the regularizing
and the fidelity term, together with some compactness properties. Note that the balancingD
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AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 145

parameters between the fidelity term and the regularization term, namely, λi, µi, i = 1, 2,
are involved in the definition of this regularization term. Precisely, the cost functional of
problem (P) writes as

H(g,Au) + inf
v∈BV(Q)

∫ T

0
(TVx[λ1(u− v)] + TVx[µ1v]) (t) dt

+
∫

Ω
(TVt[λ2(u− v)] + TVt[µ2v]) (x) dx.

4.1. Lower semicontinuity of the inf-convolution operator. Note that the lower semi-
continuity of the inf-convolution operator is not true in general, even if Fλ is; see [6, Example
12.13]. Additional assumptions have to be imposed, such as coercivity on the underlying space
as well as exactness of the infimal convolution, in order to get the lower semicontinuity. We
first need the following technical lemma, which provides an estimate on u ∈ BV(Q) when
(3.4) is satisfied.

Lemma 4.1. Assume that α ∈ W1,∞(T ) and that there exists αmin > 0 such that 0 <
αmin ≤ α(t) a.e. t ∈ T ; then 1/α ∈W1,∞(T ). Moreover, if αu ∈ BV(Q), then u ∈ BV(Q) as
well.

Proof. Let α be in W1,∞(T ) such that 0 < αmin ≤ α(t) a.e. t ∈ T . We use Proposition 8.4
of [13]: a function f ∈ L∞(T ) belongs to W1,∞(T ) if and only if there exists a constant C
such that

|f(x)− f(y)| ≤ C |x− y| for a.e. x, y ∈ T .
Here, we assume that α ∈W1,∞(T ) so that there exists C such that

|α(x)− α(y)| ≤ C |x− y| for a.e. x, y ∈ T .

As 0 < 1
α ≤

1
αmin

, the function 1
α belongs to L∞(T ). Moreover, for a.e. x, y ∈ T ,∣∣∣∣( 1

α

)
(x)−

(
1
α

)
(y)
∣∣∣∣ =
|α(x)− α(y)|
|α(x)α(y)|

≤ 1
α2
min

|α(x)− α(y)| ≤ C

α2
min

|x− y|.

Using again Proposition 8.4 of [13] proves that 1/α ∈ W1,∞(T ). Moreover, if αu ∈ BV(Q),
then u ∈ BV(Q). Indeed, u = 1

α(αu) and

‖u‖BV(Q) = ‖ 1
α

(αu)‖BV(Q) = ‖ 1
α

(αu)‖L1(Q) + TV
(

1
α

(αu)
)

≤ 1
αmin

‖αu‖L1(Q) + TV
(

1
α

(αu)
)
.

Now, if β ∈W1,∞(T ) and v ∈ BV(Q), we get

(4.2) TV(βv) ≤ ‖β‖L∞(T )TV(v) + ‖β′‖L∞(T ) ‖v‖L1(Q),

where β′ is the (distributional) derivative of β. We set with β = 1
α and v = αu:

TV(
1
α

(αu)) ≤
∥∥∥∥ 1
α

∥∥∥∥
L∞(T )

TV(αu) +
∥∥∥∥( 1

α

)′∥∥∥∥
L∞(T )

‖αu‖L1(Q).
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146 M. BERGOUNIOUX AND E. PAPOUTSELLIS

Finally,

(4.3) ‖u‖BV(Q) ≤

(
1

αmin
+
∥∥∥∥( 1

α

)′∥∥∥∥
L∞(T )

)
‖αu‖L1(Q) +

TV(αu)
αmin

≤ Cα‖αu‖BV(Q) < +∞

with Cα = 1
αmin

+ ‖
( 1
α

)′ ‖L∞(T ).

Next, we show that the inf-convolution operator is exact in our case.

Lemma 4.2 (exactness of Fλ#Fµ). Assume that λ and µ verify (3.4) and there exists
κ > 0 such that µ2 = κλ2. Then for every u ∈ BV(Q), there exists vu ∈ BV(Q) such that

vu ∈ argmin
v∈BV(Q)

Fλ(u− v) + Fµ(v) and
∫
Q
µ2(t) vu(t, x) dt dx = 0.

Proof. Fix u ∈ BV(Q). Let vn be a minimizing sequence of

inf
v∈BV(Q)

Fλ(u− v) + Fµ(v).

Then vn ∈ BV(Q), and without loss of generality, we may assume that the mean value of
µ2vn is

µ2vn :=
1
|Q|

∫
Q
µ2(t)vn(t, x) dx dt = 0.

Indeed, since µ2 = κλ2, it is easy to see that

Fλ

(
u− (vn −

1
µ2
µ2vn)

)
+ Fµ

(
vn −

1
µ2
µ2vn

)
= Fλ(u− vn) + Fµ(vn)

so that wn := vn − 1
µ2
µ2vn is also a minimizing sequence that satisfies ∫Q µ2wndx dt=0.

As Fλ(u−vn)+Fµ(vn) is bounded, Theorem 3.3 yields that TV(µ2vn) is bounded as well.
Moreover, we have ‖µ2vn‖L1(Q) ≤ CQTV(µ2vn) from the Poincaré–Wirtinger inequality (see
Theorem 2.1). Hence, (µ2vn) is BV-bounded. This implies that vn is BV-bounded as well
(see Lemma 4.1 and (4.3)). Therefore, there exists vu ∈ BV(Q) such that, up to subsequence,
vn

w∗
⇀ vu in BV(Q), which implies that vn → vu for the L1(Q) topology. We end the proof

with the lower semicontinuity of the functional with respect to the the L1(Q) topology (with
Proposition 3.2). In addition, since

∫
Q µ2(t)vn(t, x) dx dt = 0, we get from the L1 convergence

that
∫
Q µ2(t)vu(t, x) dx dt = 0 as well.

Now we prove a lower semicontinuity result of Fλ#Fµ. Here, we use the exactness of
Fλ#Fµ and the BV coercivity of one of its terms. For more details on the lower semicontinuity
of the infimal convolution, we refer to [41].

Theorem 4.3. Assume that λ and µ verify (3.4) and there exists κ > 0 such that µ2 = κλ2.
Then the infimal-convolution Fλ#Fµ operator is lower semicontinuous on BV(Q) with respect
to the L1(Q) topology. Precisely, if un is a sequence in BV(Q) that converges to some u with
respect to the strong L1(Q) topology, then

(4.4) Fλ#Fµ(u) ≤ lim inf
n→+∞

Fλ#Fµ(un).
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Proof. Let un ∈ BV(Q) such that un → u in L1(Q). If lim infn→+∞ Fλ#Fµ(un) = +∞,
then relation (4.4) is satisfied. Otherwise, there exists a subsequence (denoted similarly) and
a constant C such that for every n ∈ N, Fλ#Fµ(un) ≤ C. Since Fλ#Fµ is exact, there exists
vn ∈ BV(Q) such that

∀n ∈ N Fλ(un − vn) + Fµ(vn) = Fλ#Fµ(un) and
∫
Q
µ2vn = 0.

We claim that (µ2vn) is BV-bounded (that is, ‖µ2vn‖BV(Q) is uniformly bounded with respect
to n). Indeed, Theorem (3.3) yields

∀n ∈ N TV(µ2vn) ≤ 1
C−µ

Fµ(vn) ≤ C

C−µ
.

Using the Poincaré–Wirtinger inequality, we have that

∀n ∈ N ‖µ2vn‖L1(Q) ≤ CQTV(µ2vn) ≤
C CQ

C−µ
.

Following similar steps as before, there exists a subsequence vn
w∗
⇀ ṽ in BV(Q). Due to the

lower semicontinuity Fλ and Fµ with respect to the L1(Q) topology and its exactness, we have

Fλ(u− ṽ) + Fµ(ṽ) ≤ lim inf
n→+∞

Fλ(un − vn) + Fµ(vn) = lim inf
n→+∞

Fλ#Fµ(un),

and since Fλ#Fµ(u) ≤ Fλ(u− ṽ) + Fµ(ṽ), we conclude that

Fλ#Fµ(u) ≤ lim inf
n→+∞

Fλ#Fµ(un).

4.2. Well-posedness. Now we focus on the existence of a solution for (P). The proof is
based on the corresponding results in [1, 44, 33] adapted to a spatial-temporal framework.

Theorem 4.4 (existence). Assume that
• Case (1): the data g ∈ Lq(Q) and A satisfies (3.9); or
• Case (2): the data g ∈ L∞(Σ).

Let λ,µ be parameters that satisfy (3.4) and that there exists a real number κ > 0 such that
µ2 = κλ2. Then there exists a solution to problem (P).

Proof. We first observe that E(u) is bounded from below and there exists u0 ∈ BV(Q)
such that E(u0) < +∞. Let un ∈ BV(Q) be a minimizing sequence of problem (P). Then
there exists M0[g] > 0 such that

(4.5) ∀n ∈ N, Fλ#Fµ(un) +H(g,Aun) ≤M0[g] < +∞.

This implies in particular that un ∈ BV(Q) ∩ D in Case (2). In the following, we indicate
the dependence of the different bounding constants Mi with respect to g because we need a
precise estimate to prove Theorem 4.8.D

ow
nl

oa
de

d 
01

/1
9/

18
 to

 1
31

.2
15

.2
25

.9
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

148 M. BERGOUNIOUX AND E. PAPOUTSELLIS

Using Proposition 3.4, we deduce that TV(wn) is bounded where we have set wn = λ2un.
Therefore, with the Poincaré–Wirtinger inequality, we have ‖wn − wn‖Lp(Q) ≤ M1[g] with

1 ≤ p ≤ d+1
d and M1[g] = CQ

C1
M0[g] Moreover, we have

‖wn‖Lp(Q) ≤ ‖wn − wn‖Lp(Q) + ‖wn‖Lp(Q) ≤M1[g] + |Q|
1
p
−1
∣∣∣∣ ∫

Q
wn dx dt

∣∣∣∣.
The goal is to prove that the sequence (un) is bounded in BV(Q). This is equivalent to finding
an estimate on the last term of the above inequality. To achieve this, we consider the two
cases with respect to the choice of the fidelity term presented in section 3.2:

Case (1): H(g,Au) = 1
q‖Au− g‖

q
Lq(Q).

Recall that g ∈ Lq(Q), A ∈ L(Lp(Q),Lq(Q)) with 1 ≤ p ≤ d+1
d , 1 ≤ q < ∞, and satisfy

(3.9). Then one has that∣∣∣∣∫
Q
wn dx dt

∣∣∣∣ ‖AχQ‖Lq(Q)

|Q|
= ‖Awn‖Lq(Q) = ‖Awn−Awn+Awn− λ2g + λ2g‖Lq(Q)

≤ ‖A‖ ‖wn− wn‖Lp(Q)+ ‖A(λ2un)− λ2g‖Lq(Q)+‖λ2g‖Lq(Q)

≤ ‖A‖ ‖wn− wn‖Lp(Q)+ ‖λ2‖L∞(T )

(
‖Aun − g‖Lq(Q) + ‖g‖Lq(Q)

)
≤ ‖A‖M1 + ‖λ2‖L∞(T )

(
(qM0)1/q + ‖g‖Lq(Q)

)
≤M2,

where

M2[g] = ‖A‖M1[g] + ‖λ2‖L∞(T )

(
(qM0[g])1/q + ‖g‖Lq(Q)

)
= ‖A‖

CQ
C1

M0[g] + q1/q ‖λ2‖L∞(T )M0[g]1/q + ‖λ2‖L∞(T ) ‖g‖Lq(Q) .(4.6)

Case (2): H(g,Au) = DKL(g,Ru) +H(g, g).

Recall that g ∈ L∞(Σ) and that we require an additional positivity constraint un ≥ 0.
Therefore, it suffices to bound

∫
Qwn dx dt. We employ (3.14), and using (3.12), we have

‖Rwn − λ2g‖2L1(Σ) ≤
(

2
3
‖λ2g‖L1(Σ)+

4
3
‖Rwn‖L1(Σ)

)
DKL(λ2g, λ2Run)

≤
(

2
3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4
3
‖R(wn − wn) +Rwn‖L1(Σ)

)
‖λ2‖L∞(T )DKL(g,Run)

≤
(

2
3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4
3
‖R‖ ‖wn − wn‖L1(Q)+

4
3
‖Rwn‖L1(Σ)

)
‖λ2‖L∞(T )M0[g]

≤
(

2
3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4
3
‖R‖ |Q|1/p′M1[g] +

4
3
‖Rwn‖L1(Σ)

)
‖λ2‖L∞(T )M0[g].

Hence,

(4.7) ‖Rwn − λ2g‖2L1(Σ) ≤
(
M3[g] +

4
3
‖Rwn‖L1(Σ)

)
M4[g]
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with

M3[g] =
2
3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4
3
‖R‖ |Q|1/p′M1[g](4.8)

=
2
3
‖λ2‖L∞(T ) ‖g‖L1(Σ) +

4
3
‖R‖ |Q|1/p′

CQ
C1

M0[g](4.9)

and

(4.10) M4[g] = ‖λ2‖L∞(T )M0[g].

On the other hand,

‖Rwn − λ2g‖2L1(Σ) ≥
(
‖R(wn − wn)− λ2g‖L1(Σ) − ‖Rwn‖L1(Σ)

)2

≥ ‖Rwn‖L1(Σ)

(
‖Rwn‖L1(Σ) − 2 ‖R(wn − wn)− λ2g‖L1(Σ)

)
≥ ‖Rwn‖L1(Σ)

(
‖Rwn‖L1(Σ)− 2

(
‖R‖ |Q|1/p′M1[g] + ‖λ2‖L∞(T ) ‖g‖L1(Σ)

))
= ‖Rwn‖L1(Σ)

(
‖Rwn‖L1(Σ)−M5[g]

)
(4.11)

with

M5[g] = 2 ‖R‖ |Q|1/p′M1[g] + ‖λ2‖L∞(T ) ‖g‖L1(Σ)(4.12)

= 2 ‖R‖ |Q|1/p′
CQ
C1

M0[g] + ‖λ2‖L∞(T ) ‖g‖L1(Σ) .(4.13)

Also, we have that ‖Rwn‖L1(Σ) =
∫
Q wn dx dt

|Q| ‖RχQ‖L1(Σ), that is,

(4.14) ‖Rwn‖L1(Σ) =
‖RχQ‖L1(Σ)

|Q|
‖wn‖L1(Q) .

Combining (4.7), (4.11), and (4.14), we derive that

‖RχQ‖L1(Σ)

|Q|
‖wn‖L1(Q)

(
‖RχQ‖L1(Σ)

|Q|
‖wn‖L1(Q) −M5[g]− 4

3
M4[g]

)
≤M3[g]M4[g].(4.15)

Let Bn[g] =
‖RχQ‖L1(Σ)

|Q| ‖wn‖L1(Q) −M5[g]− 4
3M4[g]. If n is such that Bn ≥ 1, it is immediate

from (4.15) and RχQ 6= 0 (see Lemma 3.8) that

‖wn‖L1(Q) ≤
M3[g]M4[g]|Q|
‖RχQ‖L1(Σ)

.

Otherwise, we have that

‖wn‖L1(Q) ≤
(

1 +M5[g] +
4
3
M4[g]

)
|Q|

‖RχQ‖L1(Σ)
.
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We finally obtain for every n ∈ N

‖wn‖L1(Q) ≤M6[g],

where

(4.16) M6[g] =
|Q|

‖RχQ‖L1(Σ)
max

{
M3[g]M4[g],

(
1 +M5[g] +

4
3
M4[g]

)}
.

To conclude, we have proved that in both cases, wn = λ2un is bounded in Lp(Q) and hence is
bounded in BV(Q). Using Lemma 4.1, un is bounded in both BV(Q) and Lp(Q). Then there
exists a subsequence still denoted by un such that un

w∗
⇀ u in BV(Q), i.e., un → u in L1(Q)

and un
w
⇀ u in Lp(Q), 1 < p ≤ d+1

d . Theorem 4.3 yields that

Fλ#Fµ(u) ≤ lim inf
n→∞

Fλ#Fµ(un).

Moreover, due to the lower semicontinuity of the fidelity terms as well as the continuity of A
and R, we conclude that

H(g,Au) ≤ lim inf
n→∞

H(g,Aun).

This means that u is a solution to (P).

Remark 4.5. To be consistent with the cases where either A is the identity operator, let
us mention that the BV-boundedness is immediate since

‖un‖Lq(Q) ≤ ‖un − g‖Lq(Q) + ‖g‖Lq(Q)

‖un‖L1(Q) − ‖g‖L∞(Q) log ‖un‖L1(Q) ≤
∫
Q
un − g log un.

We refer to [27] for the second case.

Theorem 4.6 (uniqueness). Assume that the hypothesis of Theorem (4.4) are fulfilled and,
in addition, that
• A is injective and q 6= 1 in Case (1);
• infΣ g > 0 in Case (2).

Then the solution to (P) is unique.

Proof. Note that Fλ#Fµ is convex since Fλ and Fµ are convex. We first consider Case
(1): since 1 < q <∞ and A is injective, u 7→ 1

q ‖Au− g‖
q
Lq(Q) is strictly convex.

In Case (2), since infΣ g > 0 and R is injective (see, for instance, [28, Theorem 2.57]),
u 7→ DKL(g,Ru) is strictly convex. In both cases, we have that the energy E is strictly convex
as a sum of a convex and a strictly convex term. This gives uniqueness.

Remark 4.7. The assumption that infΣ g > 0 is a usual approximation for the continuous
setting which implies a positive systematic bias on the sinogram domain; see [33, 37]. This
is not far from the reality since for a reasonably long counting process, where some millions
of photons are detected, all the PET detectors will record a certain amount of photons, even
if it is relatively small in practice. Note that one has to consider not only the recorded trueD
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coincidence events but also the random coincidence events which occur when separate positron
emissions are detected within a time window and recorded as having originated from the same
emission. This results in an additional background noise on the sinogram domain.

To conclude this section, we discuss the stability of minimizers of (P) (see [1, 33, 37],
for instance), with respect to a small perturbation on the data g. Let (gn) be a perturbed
dynamic data sequence such that

(4.17)

{
‖gn − g‖Lq(Q) → 0, gn ∈ Lq(Q) Case (1)
‖gn − g‖L∞(Σ) → 0, gn ∈ L∞(Σ) Case (2)

and the corresponding perturbed minimization problem

inf
u∈BV(Q)

H(gn,Au) + (Fλ#Fµ)(u).(4.18)

Theorem 4.8 (stability). Assume that the assumptions of Theorem 4.6 are fulfilled for
parameters λ and µ and every datum gn. Then problem (P) is stable with respect to pertur-
bations on g. Precisely, let be (gn) as in (4.17) and u, un be the solutions to (P) and (4.18),
respectively. Then there exists a subsequence of (un) that converges to u in BV(Q)-w∗.

Proof. Since un minimizes (4.18), for every v ∈ BV(Q),

(4.19) (Fλ#Fµ)(un) +H(gn,Aun) ≤ (Fλ#Fµ)(v) +H(gn,Av).

As in the previous proofs, we consider each case separately:

Case (1): H(g,Au) = 1
q‖Au− g‖

q
Lq(Q).

Since gn → g in Lq(Q), there exists n0 ∈ N such that ‖g − gn‖qq ≤ q
2q−1 for every n ≥ n0.

Then for every n ≥ n0,

(Fλ#Fµ)(un)+
1
q
‖Aun− g‖qLq(Q) ≤ 2q−1

(
(Fλ#Fµ)(un)+

1
q
‖Aun−gn‖qLq(Q)+

1
q
‖gn − g‖qLq(Q)

)
≤ 2q−1

(
(Fλ#Fµ)(u)+

1
q
‖Au−gn‖qLq(Q)+

1
q
‖gn − g‖qLq(Q)

)
≤ (M [gn] + 1).

Here, we used the convexity of the Lq norm (q > 1) and relation (4.19) with v = u. Moreover,

‖Au−gn‖Lq(Q) ≤ ‖Au− g‖Lq(Q) + ‖gn − g‖Lq(Q) ≤ ‖Au− g‖Lq(Q) + q1/q21/q−1.

So M [gn]+1 is bounded from above by a constant M0[g] that does not depend on gn. Following
the same proof of Theorem 4.4, we can prove that (un) is uniformly bounded with respect
to n in BV(Q) and in Lp-bounded with 1 < p ≤ d+1

d . Therefore, we have that un → ũ in
L1(Q), un

w
⇀ ũ in Lp(Q), with 1 < p ≤ d+1

d . It remains to show that ũ is a minimizer of (P).
Theorem 4.3 yields that

(Fλ#Fµ)(ũ) ≤ lim inf
n→∞

(Fλ#Fµ)(un).
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Moreover, Aun − gn ⇀ Aũ− g in Lq(Q). Since

∀v ∈ BV(Q), (Fλ#Fµ)(un) +
1
q
‖Aun − gn‖qLq(Q) ≤ (Fλ#Fµ)(v) +

1
q
‖Av − gn‖qLq(Q),

we get for every v ∈ BV(Q) that

(Fλ#Fµ)(ũ) +
1
q
‖Aũ− g‖qLq(Q) ≤ lim inf

n→∞

[
(Fλ#Fµ)(un) +

1
q
‖Aun − gn‖qLq(Q)

]
≤ lim

n→∞
(Fλ#Fµ)(v) +

1
q
‖Av − gn‖qLq(Q)

≤ (Fλ#Fµ)(v) +
1
q
‖Av − g‖qLq(Q).

So ũ is a minimizer, and we conclude with uniqueness that u = ũ.
Case (2): H(g,Au) = DKL(g,Ru) +H(g, g) =

∫
ΣRu− g logRu dθ ds dt.

Recall that we assumed that g, gn ∈ L∞(Σ), infΣ g, infΣ gn > 0. Using (4.19), we get

(4.20) (Fλ#Fµ)(un) +H(gn,Run) ≤ (Fλ#Fµ)(u) +H(gn,Ru).

As
H(gn,Ru) =

∫
Σ
Ru− gn logRu dθ ds dt,

gn → g in L∞(Σ), and log(Ru) ∈ L1(Σ),

lim
n→∞

H(gn,Ru) = H(g,Ru).

In particular, there exists a constant C only dependent on g and u such that

∀n ∈ N H(gn,Ru) ≤ C.

Using (4.20), we get

(Fλ#Fµ)(un) +H(gn,Run) ≤ (Fλ#Fµ)(u) +H(gn,Ru) ≤ (Fλ#Fµ)(u) + C.

Again, we can use estimates as in Theorem 4.4 Case (2) with M0 = (Fλ#Fµ)(u) + C that
does not depend on n. Therefore, un is bounded in Lp(Q) with 1 < p ≤ d+1

d by a constant,
depending on ‖gn‖L1(Σ). This bound is uniform with respect to n since ‖gn‖L∞(Σ) (and thus
‖gn‖L1(Σ)) is bounded. As before, un is bounded in BV(Q), and there exists ũ ∈ BV(Q) such
that un → ũ in L1(Q). Hence, Run → Rũ in L1(Σ) as well as pointwise convergent almost
everywhere in Σ. By Fatou’s lemma applied to the sequence (Run − gn logRun)n, we obtain

H(g,Rũ) ≤ lim inf
n→∞

H(gn,Run).

Similarly to the previous case, we get for every v ∈ BV(Q), v ≥ 0 that

(Fλ#Fµ)(ũ) +H(g,Rũ) ≤ lim inf
n→∞

(Fλ#Fµ)(un) +H(gn,Run)

≤ lim
n→∞

(Fλ#Fµ)(v) +H(gn,Rv)

≤ (Fλ#Fµ)(v) +H(g,Rv).

By uniqueness, we conclude that ũ = u is the minimizer of (P).D
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4.3. An equivalent formulation. We end this section by providing an equivalent formu-
lation for (P) that may be useful for numerical computations. The key tool is the exactness
of the inf-convolution operator. The original problem (P) also reads

inf
(u,v)∈BV(Q)×BV(Q)

H(g,Au) + Fλ(u− v) + Fµ(v).(P ′)

Theorem 4.9 (equivalence). Assume that λ and µ verify (3.4) and there exists κ > 0 such
that µ2 = κλ2.

1. If (u,v) is a solution of (P ′), then u is a solution of (P) and

(4.21) Fλ(u− v) + Fµ(v) = Fλ#Fµ(u) = inf
v∈BV(Q)

{Fλ(u− v) + Fµ(v)}.

2. If u is a solution of (P) and equation (4.21) is verified for some v ∈ BV(Q), then
(u,v) is a solution of (P ′)

Proof. Assume that (u,v) is a solution to (P ′). Then for every (u, v) ∈ BV(Q)×BV(Q),
we have

(4.22) Fλ(u− v) + Fµ(v) +H(g,Au) ≤ Fλ(u− v) + Fµ(v) +H(g,Au).

Taking u = u gives

∀v ∈ BV(Q), Fλ(u− v) + Fµ(v) ≤ Fλ(u− v) + Fµ(v),

that is, Fλ(u− v) + Fµ(v) = Fλ#Fµ(u). Let us fix u ∈ BV(Q). Using (4.22), we obtain

∀v ∈ BV(Q), Fλ#Fµ(u) +H(g,Au) ≤ Fλ(u− v) + Fµ(v) +H(g,Au),

which results in

Fλ#Fµ(u) +H(g,Au) ≤
(

inf
v∈BV(Q)

Fλ(u− v) + Fµ(v)
)

+H(g,Au) = Fλ#Fµ(u) +H(g,Au).

Therefore, u is a solution to (P).
Conversely, assume that u is a solution to (P). As Fλ#Fµ is exact at u, there exists v ∈

BV(Q) such that Fλ(u− v) + Fµ(v) = Fλ#Fµ(u). Then for every (u, v) ∈ BV(Q)×BV(Q),

Fλ(u− v) + Fµ(v) +H(g,Au) = Fλ#Fµ(u) +H(g,Au) ≤ Fλ#Fµ(u) +H(g,Au)
≤ Fλ(u− v) + Fµ(v) +H(g,Au).

This proves that (u,v) is a solution to (P ′).

5. Optimality conditions. In the final section of this paper, we deal with the optimality
conditions of (P). Optimality conditions are useful since they provide qualitative information
on the solution of the minimization problem. In many cases, they are a useful tool to prove
convergence of the algorithms and get error estimates independent on the discretization grid.
Here, we use standard duality techniques based on the convex conjugate and the subdifferentialD
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of a functional in order to characterize the solutions. However, as we often deal with the dual
of the underlying space, we prefer to use a reflexive framework since the dual of BV(Q) is
not easy to handle. Therefore, we choose p with 1 ≤ p < d+1

d so that BV(Q) is compactly
embedded in Lp(Q).

We denote 〈·, ·〉p′,p the duality product between Lp(Q) and its dual Lp
′
(Q) with 1

p + 1
p′ = 1

and

∀u ∈ Lp(Q), ∀v ∈ Lp
′
(Q), 〈v, u〉p′,p =

∫
Q
u(t, x) v(t, x) dt dx.

We start by extending Φα1 , Ψα2 , and Fα from their respective domains to Lp(Q) as follows:

Φ̃α1(u) =

{
Φα1(u) if u ∈ L1(T ; BV(Ω)),
+∞ else,

Ψ̃α2(u) =

{
Ψα2(u) if u ∈ L1(Ω; BV(T )),
+∞ else,

F̃α(u) =

{
Fα(u) if u ∈ BV(Q),
+∞ if u ∈ Lp(Q)\BV(Q).

We define the extended problem as

(P∗) inf
u∈Lp(Q)

H(g,Au) + (F̃λ#F̃µ)(u).

With the definition of F̃α, it is clear that problems (P) and (P∗) have the same solution set.
So we look for optimality conditions for (P∗). It is obvious that the lower semicontinuity for
the extended regularizing terms as in Proposition 3.2 is still valid. Moreover, Φ̃α1 , Ψ̃α2 , and
F̃α are convex as extensions of convex functions by +∞. This may be summarized in the
following corollary.

Corollary 5.1. Let α = (α1, α2) that satisfies (3.4). The functionals Φ̃α1, Ψ̃α2, and F̃α are
convex and lower semicontinuous on Lp(Q).

We next investigate the Fenchel conjugates of the corresponding regularizing terms and
focus on the characterization of the subdifferential of F̃λ#F̃µ +H(g,A·).

5.1. Fenchel conjugate of F̃λ#F̃µ. One way to derive the optimality conditions of (P∗)
is by computing the subdifferentials of each term. A useful tool to achieve this goal is to com-
pute the conjugate functionals. We start with the following theorem (see [5, Theorem 9.5.1.]).

Theorem 5.2. If V is a normed space with dual space V ′ and f : V → R∪{+∞} is a lower
semicontinuous convex and proper function, then

∀(u, u∗) ∈ V × V ′ u∗ ∈ ∂f(u)⇐⇒ u ∈ ∂f∗(u∗),

where f∗ is the Fenchel conjugate of f and the subdifferential of f at u is

∂f(u) =
{
u∗ ∈ V ∗ | ∀v ∈ V, f(v)− f(u) ≥ 〈u∗, v − u〉V ′,V

}
.
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The first step is to compute the Fenchel conjugate of the regularizing term F̃λ#F̃µ starting
by F̃λ. Let us focus on the computation of the Fenchel–conjugate of Φ̃λ. We consider the set

Kx :=
{
ξ = divx ϕ |ϕ ∈ L∞(T ; C1

c (Ω,Rd)), ‖ϕ‖∞ ≤ 1
}
⊂ L∞(Q).

We have the following lemma, which provides a relation with the sets defined in (2.3). Let us
define the injection Υ from the space of functions defined almost everywhere on Ω to the space
of functions defined almost everywhere on T × Ω as following: for every function φ defined
a.e. on Ω, Υ(φ) = ψ is defined a.e. on T × Ω with

ψ(t, x) = φ(x) a.e. on T × Ω.

Lemma 5.3. We have Υ(Kx) ⊂ Kx, where Kx is given by (2.3). Conversely, any ξ ∈ Kx
verifies ξ(t, ·) ∈ Kx, for almost every t ∈ T .

Proof. Let be ξ ∈ Kx. There exists ϕ ∈ C1
c (Ω,Rd) such that ξ = divx ϕ and ‖ϕ‖∞,x ≤ 1.

Let ψ = Υ(φ) ∈ L∞(T ; C1
c (Ω,Rd)). Then ‖ψ‖∞ ≤ 1 and Υ(ξ) ∈ Kx.

Theorem 5.4 (Φ̃α conjugate). For every function α that satisfies (3.4), we have

Φ̃∗α = 1αKx ,

where 1C is the indicator function of the set C and Kx is the Lp
′
(Q)-closure of Kx.

Proof. Note that for every u∗ ∈ Lp
′
(Q),

Φ̃∗α(u∗) = sup
v∈Lp(Q)

〈u∗, v〉p′,p − Φ̃α(v) = sup
v∈BV(Q)

〈u∗, v〉p′,p − Φα(v).(5.1)

Let ξ ∈ Kx; then ξ(t, ·) ∈ Kx for almost every t ∈ T and (2.2) gives∫
Ω
ξ(t, x)u(t, x) dx ≤ sup

ζ∈Kx

∫
Ω
ζ(x)u(t, x) dx = TVx(u)(t).

Using (3.2), we obtain that

(5.2) sup
ξ∈αKx

〈ξ, u〉p′,p = sup
ξ∈αKx

∫ T

0

∫
Ω
ξ(t, x)u(t, x) dx dt ≤ Φα(u).

As Φ̃α is positively homogeneous, Φ̃∗α is the indicator of some closed subset K̃ of Lp
′
(Q)

(Corollary 13.2.1 of [35]):
• We first prove that αKx ⊂ K̃. Let u∗ be in αKx. Using (5.1), (5.2), we have that for

any v ∈ BV(Q), Φα(v) ≥ 〈u∗, v〉p′,p, and so Φ̃∗α(u∗) ≤ 0. As Φ̃∗α is an indicator function,
this means that Φ̃∗α(u∗) = 0. So u∗ ∈ K̃ and αKx ⊂ K̃. As K̃ is Lp

′
(Q)-closed, this gives

αKx ⊂ K̃.
• Let us prove the converse inclusion. Assume that there exists u∗ ∈ K̃ such that u∗ /∈
αKx. One can separate u∗ and αKx; see [13]: there exists ω ∈ R and u0 ∈ Lp(Q) such
thatD
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〈u0, u
∗〉p,p′ = 〈u∗, u0〉p′,p > ω ≥ sup

v∗∈αKx
〈v∗, u0〉p′,p

⇒ sup
v∗∈αKx

〈v∗ − u∗, u0〉p′,p < 0.(5.3)

On the other hand, since Φ̃α is convex and lower semicontinuous with respect to the Lp-
topology, by the Fenchel–Moreau theorem we have that Φ̃∗∗α = Φ̃α. So, for all u ∈ BV(Q),

Φα(u) = sup
v∗∈Lp′ (Q)

〈v∗, u〉p′,p − Φ̃∗α(v∗) = sup
v∗∈K̃

〈v∗, u〉p′,p

since Φ̃∗α is the indicator of K̃. In particular, as u∗ ∈ K̃,

(5.4) Φα(u) ≥ 〈u∗, u〉p′,p .

Let us fix t ∈ T ; then

∀ξ ∈ Kx, α(t)ξ(x)u(t, x) ≤ sup
ζ∈Kx

α(t)ζ(x)u(t, x) a.e. x ∈ Ω,

and taking the supremum we have that

sup
ξ∈Kx

∫
Ω
α(t)ξ(x)u(t, x) dx ≤

∫
Ω

sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx,

TVx(αu)(t) ≤
∫

Ω
sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx.

We integrate over the time domain T and subtract both sides by 〈u∗, u〉p′,p to recover∫ T

0
TVx(αu)(t) dt−

∫ T

0

∫
Ω
u∗(t, x)u(t, x) dx dt

≤
∫ T

0

∫
Ω

[
sup
ζ∈Kx

α(t)ζ(x)− u∗(t, x)

]
u(t, x) dx dt.

Then, using (5.4) and Lemma 5.3, we have that for all u ∈ BV(Q),

0 ≤ Φα(u)− 〈u∗, u〉p′,p ≤
∫ T

0

∫
Ω

[
sup
ζ∈αKx

ζ(x)− u∗(t, x)

]
u(t, x) dx dt

≤
∫ T

0

∫
Ω

[
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

]
u(t, x) dx dt

≤
∫ T

0

∫
Ω

[
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

]
u(t, x) dx dt.

Hence, this implies

∀u ∈ BV(Q),
∫ T

0

∫
Ω

(
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

)
u(t, x) dx dt ≥ 0.
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Next, choosing −u instead of u, we get

∀u ∈ BV(Q),
∫ T

0

∫
Ω

(
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

)
u(t, x) dx dt = 0.

Therefore, supξ∈αKx ξ − u
∗ = 0 ∈ BV′(Q). Next, for every u ∈ Lp(Q) and for every ξ ∈ αKx,

we have

〈ξ − u∗, u〉p′,p ≤

〈
sup
ξ∈αKx

ξ − u∗, u

〉
p′,p

= 0

since αKx ⊂ Lp
′
(Q). Once again, using −u, we obtain for every u ∈ Lp(Q)

∀ξ ∈ αKx, 〈ξ − u∗, u〉p′,p = 0,

that is,
sup
ξ∈αKx

〈ξ − u∗, u〉p′,p = 0,

since αKx is a closed subset of Lp
′
(Q). As a consequence, we get

sup
ξ∈αKx

〈ξ − u∗, u0〉p′,p = 0,

which is a contradiction by (5.3).

The following is the analogous result of the previous theorem for the Ψ̃α functional and can
be proved similarly.

Theorem 5.5 (Ψ̃α conjugate). For every function α that satisfies (3.4), we have

Ψ̃∗α = 1αKt , where Kt :=
{
ξ =

dψ

dt
| ψ ∈ L∞(Ω, C1

c (T ,R)), ‖ψ‖∞ ≤ 1
}
.

Using the above theorems, we are able to compute the convex conjugate of the extended
spatial-temporal total variation defined in (3.5). We use the following results for the convex
conjugate of the infimal convolution and the convex conjugate of the sum (see [5, Chapter
9.4]); i.e., for two proper, closed, convex functionals φ, ψ, we have

(φ#ψ)∗ = φ∗ + ψ∗ and (φ+ ψ)∗ = (φ∗#ψ∗)∗∗.

Corollary 5.6. For every α that satisfies (3.4), we have that

F̃ ∗α = 1Kα
with Kα = α1Kx + α2Kt.

Proof. As F̃α = Φ̃α1 + Ψ̃α2 and Φ̃α1 , Ψ̃α2 are convex, lower semicontinuous, we have

F̃ ∗α = (Φ̃α1 + Ψ̃α2)∗ = (Φ̃∗α1
#Ψ̃∗α2

)∗∗ = (1α1Kx#1α2Kt)
∗∗ = (1α1Kx+α2Kt)

∗∗ = (1Kα)∗∗,

where Kα = α1Kx +α2Kt. Moreover, one has that (1Kα)∗∗ = 1Kα
since the (Lp

′
) closure Kα

of Kα is convex; see [35, Chapter 13].D
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Corollary 5.7 (F̃λ#F̃µ conjugate). For every λ,µ that satisfy (3.4), we have

(F̃λ#F̃µ)∗ = 1Kλ∩Kµ
,

where Kλ, Kµ are the corresponding sets defined in Corollary 5.6.

We have computed the convex conjugate of our proposed regularizer, and we proceed now
with the optimality conditions of (P).

5.2. Optimality conditions for (P) . Since the problem (P∗) is convex, we have that u
is the solution if and only if 0 ∈ ∂E(u), where

E(u) := (F̃λ#F̃µ)(u) +H(g,Au).

We use the following result that allows estimating the subdifferential of the sum of two func-
tionals; see [5, Theorem 9.5.4].

Theorem 5.8. Let (V, ‖ · ‖) be a normed space, and let f, h : V → R ∪ {+∞} be two lower
semicontinuous, convex and proper functions.

(a) The following inclusion is always true: ∂f + ∂h ⊂ ∂(f + h).
(b) If f is finite and continuous at a point of dom h, then we have: ∂f + ∂h = ∂(f + h).

5.2.1. Case (1). In this subsection we focus on the first case where the Lq fidelity term
is H(g,Au) = 1

q‖Au − g‖
q
Lq(Q) with 1 ≤ q < +∞ and A satisfies assumption (3.9). Clearly,

dom F̃λ#F̃µ = BV(Q), domH(g,Au) = Lp(Q), and u → H(g,Au) is Lp continuous at
0 ∈ BV(Q). Therefore,

∂E(u) = ∂F̃λ#F̃µ(u) + ∂H(g,Au).

Any u∗ of ∂E(u) writes u∗ = u∗1 +u∗2, where u∗1 ∈ ∂F̃λ#F̃µ(u) and u∗2 ∈ ∂H(g,Au). In the
following, we characterize the elements u∗1, u

∗
2. Starting with the subdifferential of F̃λ#F̃µ, it

is easy to check that for every u ∈ BV(Q) ↪→ Lp(Q), we get

(5.5) u∗1 ∈ ∂F̃λ#F̃µ(u)⇐⇒ u∗1 ∈ Kλ ∩ Kµ and ∀v∗ ∈ Kλ ∩ Kµ, 〈u, v∗ − u∗1〉p,p′ ≤ 0,

where Kλ ∩ Kµ is a closed convex subset of Lp
′
(Q). Indeed, we use Theorem 5.2, Corollary

5.7, and that F̃λ#F̃µ is convex and lower semicontinuous to get

u ∈ ∂(F̃λ#F̃µ)∗(u∗1) = ∂1Kλ∩Kµ
(u∗1).

The subdifferential of the data-fitting term using [20, Proposition 5.7] is

(5.6) ∂H(g,Au) =

{
A∗(Au− g)q−1 if 1 <q<∞{
A∗z, ‖z‖L∞(Q)≤ 1, z ∈ sign(Au− g)

}
if q = 1.

Note that in the latter case one has

∂(‖ · − g‖L1(Q))(v) = ∂(‖·‖L1(Q))(v − g) = {z ∈ L∞(Q) | ‖z‖L∞(Q) ≤ 1, z ∈ sign(v − g)}.

Overall, we have that

0 ∈ ∂E(u)⇐⇒ ∃u∗ ∈ ∂H(g,Au) such that− u∗ ∈ ∂F̃λ#F̃µ(u),

and one concludes to the following result.D
ow

nl
oa

de
d 

01
/1

9/
18

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN ANISOTROPIC INF-CONVOLUTION BV TYPE MODEL 159

Theorem 5.9. A function u ∈ BV(Q) is a solution to (P) if and only if

1. ∀v ∈ Kλ ∩ Kµ,
〈
u, A∗(Au− g)q−1 − v

〉
p,p′
≤ 0, if 1 < q < +∞;

2. ∀v ∈ Kλ ∩ Kµ, 〈u, A∗z− v〉p,p′ ≤ 0, if q = 1 with

z ∈ L∞(Q), ‖z‖L∞(Q) ≤ 1, z ∈ sign(Au− g).

5.2.2. Optimality conditions for (P): Case (2). In this subsection we focus on the
Kullback–Leibler divergence (see (3.18)), i.e., H(g,Ru) = DKL(g,Ru)+H(g, g), where u ∈ D,
the domain of the fidelity term. We cannot follow the same strategy as before due to the
limitations of this fidelity in terms of continuity. It is known that a proper, convex, lower
semicontinuous function is continuous if and only if the interior of its domain is not empty,
i.e., int(domf) 6= ∅; see [20]. In our case the effective domain is in fact nowhere dense
and DKL(g,R·) is nowhere continuous in L1(Ω), let alone in Lp(Ω); see [19, Remark 2.12].
Moreover, F̃λ#F̃µ is not continuous with respect to the Lp norm.

Therefore, we use BV(Q) as the underlying functional space. In the following, 〈·, ·〉 de-
notes the duality product between BV(Q)

′
and BV(Q). We use Theorem 5.8 again with

V = BV(Q), f = Fλ#Fµ, and h = H(g,R(·)). Indeed, f is lower semicontinuous due to
Theorem 4.3 and h due to the continuity properties of both the Radon transform and the
Kullback–Leibler divergence.

Proposition 5.10. Assume that λ and µ satisfy (3.4) and that there exists a real number
κ > 0 such that µ2 = κλ2. Then Fλ#Fµ is continuous on BV(Q) (and of course at any
element of domf ∩ domh ⊂ BV+(Q), the set of positive BV functions).

Proof. Let u1, u2 be in BV(Q). As Fλ#Fµ is exact, there exists v1 ∈ BV(Q) such that
Fλ#Fµ(u1) = Fλ(u1 − v1) + Fµ(v1). We get

Fλ#Fµ(u2) = inf
v∈BV(Q)

Fλ(u2 − v) + Fµ(v) ≤ Fλ(u2 − v1) + Fµ(v1)

≤ Fλ(u2 − u1) + Fλ(u1 − v1) + Fµ(v1)
= Fλ(u2 − u1) + Fλ#Fµ(u1).

Similarly,
Fλ#Fµ(u1) ≤ Fλ(u1 − u2) + Fλ#Fµ(u2),

and using Theorem 3.3,

|Fλ#Fµ(u1)− Fλ#Fµ(u2)| ≤ Fλ(u1 − u2) ≤ C+
λTV(λ2(u1 − u2)).

Moreover,

TV (λ2(u1 − u2)) ≤ ‖λ2‖L∞(T ) TV (u1 − u2) +
∥∥∥λ′2∥∥∥

L∞(T )
‖u1 − u2‖L1(Q)

≤ ‖λ2‖W1,∞(T ) ‖u1 − u2‖BV .

This prove the continuity of Fλ#Fµ on BV(Q).D
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Recall that D, given in (3.19), is the domain of the fidelity term. So u ∈ BV ∩ D is a
solution to (P) if and only if

0 ∈ ∂(Fλ#Fµ)(u) + ∂H(g,Ru).

Equivalently, there exists u∗ ∈ ∂(Fλ#Fµ)(u) such that −u∗ ∈ ∂H(g,R(·))(u). As usual, we
have u∗ ∈ ∂(Fλ#Fµ)(u) ⇐⇒ u ∈ ∂(Fλ#Fµ)∗(u∗). However, in this setting we are in a
different topology. Though we have computed F̃ ∗λ for the previous case, the computation of
F ∗λ is still challenging. Indeed, we cannot use the arguments used in Theorem 5.4 since the
underlying topology is now the BV one and not the Lp(Q) one any longer. In particular, we
lose reflexivity as well as an integral representation on the duality product; see [23].

Since Fλ is positively homogeneous functional, we know there exists a closed convex subset
of BV

′
that we call Kλ such that F ∗λ = 1Kλ

(u∗) is the indicator function of Kλ. Unfortu-
nately, we are not able to give an explicit description of Kλ: we only know that Kλ ⊂ Kλ.
We obtain

(Fλ#Fµ)∗ = F ∗λ + F ∗µ = 1Kλ
+ 1Kµ = 1Kλ∩Kµ .

Therefore,

u∗ ∈ ∂(Fλ#Fµ)(u) ⇐⇒ u∗ ∈Kλ ∩Kµ and ∀w∗ ∈Kλ ∩Kµ 〈u, w∗ − u∗〉 ≤ 0.

Next, we compute ∂H(g,R·)(u). Let w ∈ BV(Q) ∩ D:

−u∗ ∈ ∂H(g,R·)(u) =⇒ ∀s > 0
H(g,R(u+ sw))−H(g,Ru)

s
≥ −〈u∗, w〉 .

Passing to the limit as s→ 0 gives 〈∇H(g,R·)(u) + u∗, w〉 ≥ 0.
Conversely, let us assume that 〈∇H(g,R·)(u) + u∗, w〉 ≥ 0 for every w ∈ BV ∩ D and

prove that −u∗ ∈ ∂H(g,R·)(u), that is,

∀w ∈ BV(Q), H(g,R(u+ w))−H(g,Ru) ≥ 〈(−u∗), w〉 .

Let w ∈ BV(Q): if u+ w /∈ D, then

+∞ = H(g,R(u+ w))−H(g,Ru) ≥ 〈(−u∗), w〉 .

Otherwise, by convexity,

H(g,R(u+ w))−H(g,Ru) ≥ 〈∇H(g,R·)(u), w〉 ≥ 〈(−u∗), w〉 .

Therefore

−u∗ ∈ ∂H(g,R·)(u) ⇐⇒ ∀w ∈ BV(Q) ∩ D, 〈∇H(g,R·)(u) + u∗, w〉 ≥ 0.

A short computation gives

∇H(g,R·)(u) = R∗
(
1Σ −

g

Ru

)
.

Finally,

−u∗ ∈ ∂H(g,R·)(u) ⇐⇒ ∀w ∈ BV(Q) ∩ D,
〈
R∗
(
1Σ −

g

Ru

)
+ u∗, w

〉
≥ 0.

For this case, we conclude with the following optimality conditionsD
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Theorem 5.11. Let u ∈ BV(Q)∩D. Then u is a solution to (P) if and only if there exists
u∗ ∈Kλ ∩Kµ ⊂ BV(Q)

′
such that

∀w∗ ∈Kλ ∩Kµ, 〈u, w∗ − u∗〉 ≤ 0(5.7)

∀w ∈ BV(Q) ∩ D,
〈
R∗
(
1Σ −

g

Ru

)
+ u∗, w

〉
≥ 0.(5.8)

Remark 5.12. The difficulties met in order to establish the optimality conditions are
closely related to the so-called two-norm discrepancy in control theory (see [14], for exam-
ple). We have to deal with both the BV-norm and the Lp-norm. The qualification condition
that we need to describe the subdifferentials is easy to satisfy with the BV-norm. However, the
computation of the conjugate functions cannot be explicit within a nonreflexive framework.
On the contrary, the use of the Lp-norm leads to a nice description of conjugate functions,
while the splitting of the differential cannot be done. In a discrete setting, these difficulties
disappear of course.

6. Conclusion. We perform a thorough analysis on the proposed spatial-temporal infimal-
convolution regularizer under time-dependent weight parameters. It acts in a separate mode
on the spatial and temporal domains and can be applied to a wide range of problems, such
as denoising, deblurring, and emission tomography, with different kind of noise (impulse,
Gaussian, or Poisson). We focus on the well-posedness of the proposed minimization problem
and provide existence, uniqueness, and stability results into a very general framework. We
further derive the optimality conditions using standard tools from duality theory. However, we
have still to focus in depth on the characterization of the sets Kλ to have a clear insight of the
dual variables. This implies that we have to deal with the dual of the BV space and use some
integral representations as in [23]. Another issue is to describe carefully the discretization
process and the dual problem in an appropriate way, especially with respect to isotropic or
anisotropic spatial-temporal discrete norms. Finally, in a forthcoming paper, we shall perform
numerics, especially for PET reconstruction, and compare this model to those that can be
found in the literature, such as [25].

Acknowledgments. We would like to thank the two anonymous referees who have helped
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REFERENCES

[1] R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse
Problems, 10 (1994), pp. 1217–1229, https://doi.org/10.1088/0266-5611/10/6/003.

[2] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous
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