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Abstract
The aim of this paper is to test and analyse a novel technique for image
reconstruction in positron emission tomography, which is based on (total
variation) regularization on both the image space and the projection space. We
formulate our variational problem considering both total variation penalty
terms on the image and on an idealized sinogram to be reconstructed from a
given Poisson distributed noisy sinogram. We prove existence, uniqueness and
stability results for the proposed model and provide some analytical insight
into the structures favoured by joint regularization. For the numerical solution
of the corresponding discretized problem we employ the split Bregman
algorithm and extensively test the approach in comparison to standard total
variation regularization on the image. The numerical results show that an
additional penalty on the sinogram performs better on reconstructing images
with thin structures.

Keywords: variational regularization, positron emission tomography, total
variation
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1. Introduction

Positron emission tomography (PET) is a medical imaging technique for studying functional
characteristics of the human body, used in brain imaging, neurology, oncology and recently
also in cardiology. The patient is injected with a dose of radioactive tracer isotope which
concentrates in tissues of interest in the body. Typically, cells in the tissue which are more
active have a higher metabolism, i.e., need more energy, and hence will absorb more tracer
isotope than cells which are less active. The isotope suffers radioactive decay which invokes it
to emit a positron. As soon as the emitted positron meets an electron a pair of gamma rays is
sent out into approximately opposite directions and is picked up by the PET-scanner. The
collection of all these pairs builds the PET measurement g from which the distribution u of the
relevant radiopharmaceutical shall be reconstructed.

As a (yet simplified) mathematical model the PET measurement can be interpreted as a
sample of

∫∫= −f u te d , (1.1)h t

L

d
L

where the above integral is the Radon transform  of u along the line L connecting the
emission point of the gamma rays and the detector, see figure 1; the above exponential
characterizes the damping due to the ‘attenuation’ function h (which is, e.g., known from CT
[36 chapter 7]). The function f(L) is called the sinogram of u. Since the attenuation can be
corrected beforehand we shall ignore the attenuation term in the solution of the inverse
problem (corresponding to ≡h 0) in this paper. The basic mathematical problem for the
reconstruction of the distribution u, is the inversion of the Radon transform. In PET, this
inversion is complicated by the presence of undersampling and noise [36]. The PET data
usually is corrupted by Poisson noise, also called photon noise, due to the photon counting
process during the PET scan.

In this paper, we propose a novel technique for reconstructing an image u from noisy
PET measurements g by a variational regularization approach using total variation (TV)
regularization [28] on both the image u and the sinogram u. More precisely, let

Σ θ= ∈ ×−s{( , ) }n n 1 be the projection space (see figure 1) and 2 the physical space.
The Radon transform  Σ→ L L: ( ) ( )1 2 1 of ∈u L ( )1 2 is given by


∫θ δ θ= −u s u x s x x( , ) ( ) ( · )d . (1.2)

2

Given measurements Σ∈g L ( )2 , we reconstruct ∈u BV ( )2 by solving

⎧⎨⎩
⎫⎬⎭

 
∫α β Σ+ + −

Σ∈ ⩾
 ( )

( )
arg min Du D( u) ( )

1

2

(g u)

g
. (1.3)

u BV , u 0 a.e.in

2
2

2 2

Here BV ( )2 is the space of functions of bounded variation, see [2], and α β, are positive
parameters. The terms Du| |( )2 and ΣD u| ( ) |( ) are TV regularizations on the image u and
the sinogram u respectively, that is
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The data fidelity ∫ −Σ g u g( )2 is a weighted L2 norm that constitutes a standard
approximation of the Poisson noise model given by the Kullback–Leibler divergence,
compare [29, chapter 4] for instance.

PET reconstruction using TV regularization is not new. However, typically the TV
regularization is applied to the image function u only. By additionally regularizing the
sinogram u using a total variation penalty in projection space we will show that under
certain conditions images of higher quality can be reconstructed. In particular, this is the case
in the presence of high noise in g and when aiming to preserve thin and elongated structures
in u.

1.1. Related methods

Our approach (1.3) is inspired by an alternating regularization procedure for PET first
introduced by Barbano et al. in [3]. Given possible under sampled and noisy PET mea-
surements ∈ ×g n m an image u* is reconstructed by solving


α β λ+ + −

∈ =× −



s u g smin

2
, (1.4)

s u s u s{( , ) : , }
1 1 2

2
n m 1

where − 1 is the inverse Radon transform approximated by the filtered backprojection and
α β, and λ are positive weighting parameters. Note that here a regularized reconstruction u* is
computed by smoothing both the image u and the sinogram s. Indeed, the regularization in
(1.4) is given by the total variation regularizer s 1, see [28], that acts on the sinogram s
only. The image u is forced to be sparse by an ℓ1 penalty. The main focus of [3] is to study the
effect of total variation regularization on the sinogram, rather than the image as usually done
in variational PET reconstruction [10, 11, 30, 31]. Therefore, in their numerical experiment
the effect of the image regularization is kept low by choosing an appropriate weighting
α β≫ . In [3] it is proved that (1.4) has a unique solution s u( *, *). Moreover, the authors
show the effect, the total variation regularization of the sinogram s, has on the reconstructed
image u by a computational experiment on a simulated data set.

The main idea of adding a total variation regularization on the projection space originated
in the works of Thirion [34], and Prince et al [27]. In [34] the author proposes to connect edge
detection of the tomographic image to finding continuous lines in the sinogram. That is, a
point on a line in the sinogram corresponds to an edge in the object space with a fixed

Figure 1. PET scan geometry. The image function u is encoded in integrals
θ=f L f s( ) ( , ) along lines L from the emission point to the detectors, see (1.1). The

lines L are defined by an angle θ and distance s to the origin. ( ′L is the distance from the
emission point through the object).
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orientation and distance from the origin, see figure 1. Moreover, in [27] Prince and Willsky
focus on reconstructing tomographic images by using a Markov random field prior on the
sinogram, in particular in the presence of data with a low signal-to-noise ratio (SNR) and
limited angle or sparse-angle measurement configurations. Their approach leads to the
computation of a smoothed sinogram from which the image u is reconstructed using filtered
back projection.

1.2. State of the art—direct and iterative PET reconstruction

In (1.3) we reconstruct an image from PET measurements by smoothing both in measurement
and image space. This indeed combines the philosophies of the two main approaches for
image reconstruction from PET measurements: (i) direct methods and (ii) iterative variational
method. While in direct methods the PET measurements are smoothed by an appropriate filter
and then inverted (see e.g. [22, 24]), iterative methods (respectively variational methods
solved iteratively) are based on the standard Bayesian modelling approach in inverse pro-
blems in which prior knowledge in terms of regularity is expressed for the image function u
(rather than the measurements f). The possibility to include statistical noise models is a main
advantage of iterative and variational methods, on which we shall focus in the following.

In iterative methods for PET reconstruction the noise distribution is accounted for by
modelling the randomness in the numbers of detected gamma counts. The most popular
iterative approach for PET reconstruction is the expectation-maximization (EM) algorithm.
To recall, the problem of image reconstruction can be formulated as a solution of the linear
and ill-conditioned operator equation:

=g Ku,

where g is the Poisson distributed data and K is a finite-dimensional sampling of the Radon
transform. Typically, we may assume that the data are realizations of random variables Xi and
we consider the detected values gi as a realization of a random variable Xi, for =i N1 ,..., . It
is reasonable to maximize the conditional probability P u g( | ), which by the Bayes’ Law is:

=P u g
P g u P u

P g
( )

( ) ( )

( )
.

It is equivalent to maximize P g u P u( | ) ( ), since the denominator does not depend on u.
Moreover, the random variables of the measured data are Poisson distributed with expected
values given by Ku( )i and

∏=
=

−P g u
Ku

g
( )

( )

!
e . (1.5)

i

N
i
g

i

Ku

1

( )
i

i

The Bayesian approach allows to consider additional information to our model with an
appropriate prior probability of the image u, see [15, 21]. The most frequently used prior
densities are the Gibbs priors, i.e.,

= α−P u( ) e , (1.6)J u( )

where α > 0 is a regularization parameter and J(u) is a convex energy functional. Instead of
maximizing P g u P u( | ) ( ), we minimize − P g u P ulog ( ( | ) ( )). Hence, we seek a minimizer of
the following problem
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⎪ ⎪

⎪ ⎪

⎧
⎨
⎩

⎫
⎬
⎭∑ α− +

⩾ =
( )Ku g Ku J uarg min ( ) log ( ) ( ) , (1.7)

u i

N

i i i
0 1

where the first term is the so-called Kullback–Leibler divergence of u and g. This often serves
as a motivation to consider the continuous variational problem

∫ α− +
⩾

{ }Ku g Ku J uarg min ( log ( )) ( ) . (1.8)
u 0

In the case where ≡J 0, the first optimality condition in (1.8) yields the following iterative
scheme, known as EM algorithm

⎛
⎝⎜

⎞
⎠⎟=+u

u

K
K

g

Ku*1
* .k

k

k

1

Additionally imposing prior information on the solution, e.g., that the solutions has a small
total variation, leads to an extension of the EM algorithm, e.g., the EM-TV algorithm [4, 10].
See also [5, 30, 31, 37] for related approaches and [10, 11] for extensions of EM-TV to
Bregmanized total variation regularization.

Outline

The rest of the paper is organized as follows: in the next section we prove existence,
uniqueness and stability results for our variational model in the continuous setting. In
section 3, we focus on solving numerically our problem using the split Bregman method and
present our numerical simulations in section 4.

2. TV regularization on image and sinogram

In this section, we will discuss the well-posedness of our minimization problem (1.3). To do
so, we first rewrite (1.3) for image functions u that are defined on a bounded and open domain
Ω⊂R2 including sufficiently large balls around zero. We consider the following problem

⎫⎬⎭∫

α Ω β Σ= +

+ −

Ω Ω

Σ

∈ ⩾



{F u Du D u

g u

g

( ) ( ) ( ) ( )

1

2

( )
. (2.1)

u BV u

arg min

( ), 0 a.e. in

2

We enforce prior information in terms of regularization on both the image and its sinogram.
Note, that the TV regularization on the sinogram in (2.1) has a different effect on the
reconstructed image compared to regularizing in image space (β = 0) only. Of course,
regularization of the image u enforces a certain regularization of the sinogram u as well.
However, because of the nonlinear character of the total variation regularization, TV
regularization of the sinogram is not equivalent to regularization on the image and vice-versa.
In (2.1) the two types of TV regularization impose different structures in the subgradients of
the two terms. This is also emphasized in section 2.4 where the source condition (2.22) and
the elements p p,1 2 are described. Indeed, beyond the topology imposed by the regularizer the
structure imposed by the sub gradients of the total variation regularizers are crucial for the
properties of a solution of (2.1). In particular, in what follows we will see that the additional
TV regularization on the sinogram can have a positive effect when reconstructing smooth,
thin structures as can be observed in the myocardium for instance. This effect will be both
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motivated analytically by the characterization of a solution of (2.1) for the simple case when g
is the sinogram of a disc for instance, as well as experimentally verified by testing the method
against some representative examples in the numerical part of the paper.

We start with some first observations that are crucial ingredients of the well-posedness
analysis for (2.1). In order not to divide by zero in the weighted L2 norm in (2.1), we first
assume that there exists constant >c 01 such that

θ< ⩽ ⩽ Σ∞c g s g0 ( , ) . (2.2)L1 ( )

The constraint (2.2) is not significantly restrictive in most medical experiments. Since u is
assumed to be non-negative, this basically can be achieved if the lines in the Radon transform
are confined to those intersecting the support of u, at least in a discretized setting.

Moreover, to justify the definition of F(u) in (2.1) over the admissible set
Ω Ω∈ ⩾u BV u{ ( ), 0 a.e. in } in theorem 2.1 we show that the Radon transform of u is again

in BV . To do so it is important to assume that the object we wish to recover is compactly
supported. Hence, we may assume that Ω⊂ ⊂u Bsupp r , where Br is the ball with radius r
centered at the origin. Consequently, (1.2) implies that θ =u s( , ) 0, when ∉ −s r r[ , ] and
the projection space becomes:

Σ θ θ π= − ⩽ ⩽ ⩽ <s r s r{( , ): , 0 }. (2.3)

If it is not stated otherwise, we will always assume that the reconstructed image is compactly
supported. Note that, we allow negative values on the s variable and that we do not consider
the Radon transform for θ π= . Likewise, we may allow that ⩾s 0 and θ π⩽ <0 2 . Hence,
we consider the Radon space Σ as the surface of a half cylinder with radius 1. Moreover, since
Dirac δ function is even, equation (1.2) implies that the coordinates ( ϕ−s, ) and ( ϕ π+s, )
correspond to the same point in the Radon space.

2.1. BV-continuity of the Radon transform

Our first result deals with a continuity property for the Radon transform as a mapping operator
for functions with bounded variation. A similar result is proved by M Bergounioux and E
Trélat [8] in the three dimensional case and for bounded and axially symmetric objects.

In what follows we do not need this symmetry assumption, but prove that the Radon
transform is BV continuous for compactly supported u in two space dimensions.

Theorem 2.1. Let Ω∈u BV ( ) and the ball Br with radius r be its compact support, then
Σ∈u BV ( ) and the Radon transform is BV continuous on the subspace of functions

supported in Br.

Proof. It is well known that the Radon transform is L1 continuous and the following
estimate holds for ⩾n 2:

⩽Σ
− ( ) ( )u S u . (2.4)L

n
L

1
n n1 1

Hence, to prove BV-continuity we need to prove that the variation of u over Σ is finite and
bounded by the BV norm of u, i.e.,

∫Σ θ θ θ Σ= ∈ ⩽ < ∞
Ω ∞ { }( )V u u s g s s g C g( , ) sup ( , ) div ( , )d d : ( ) , 1 .c

1 2
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The following equations can easily be derived by the geometry depicted in figure 1, where (x,
y) is the annihilation point and t runs through the line L:

θ θ= −x s tcos sin , (2.5)

θ θ= +y s tsin cos . (2.6)

We may also assume that ∈ −t r r[ , ]. Therefore,

⎡⎣
⎤⎦

∫
∫ ∫ ∫

∫ ∫ ∫
θ θ θ θ θ θ θ

α

θ θ

= − +

= ⃗

+ ⃗

Ω θ θ
π

− −

π

− −





u s g s s u s t s t

u x y g

g x y

( , ) div ( , )d d ( cos sin , sin cos )

( , ) ·

· d d d ,

g s t s

r

r

r

r

div ( , ) d d d

0
1

2

r

r

r

r

0

where α ⃗ = − y x( , ), θ θ θ⃗ = (cos , sin ) and in the above calculations we have used (2.5)(2.6).
Define, ⃗ =G x y G x y G x y( , ) ( ( , ), ( , ))1 2 with

∫
∫

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ

= − + + +

= + + +

π

π

G x y yg x y g x y

G x y xg x y g x y

( , ) ( , cos sin ) ( , cos sin ) cos d

( , ) ( , cos sin ) ( , cos sin ) sin d

1
0

1 2

2
0

1 2

then,

∫ α θ θ=
∂
∂

+
∂
∂

= ⃗ + ⃗
π

 ( )G x y
g

x

g

y
g gdiv ( , ) · · d .1 2

0
1 2

The function G lies in C ( )1 2 and if we restrict G on Ω and consider χG Br
then Ω∈G C ( )c

1 .
Moreover,

∫ π π⩽ + ⩽ + ⩽ + =
π

∞ ∞G x y y g g g y g r C( , ) (1 ) (1 )1
0

1 2

and ⩽G x y C| ( , ) |2 . If we set

⎜ ⎟⎛
⎝

⎞
⎠∫ ∫ ∫ ∫= =

− − − −
A u x y G x y x y C u x y

G x y

C
x y( , ) div ( , )d d ( , ) div

( , )
d d

r

r

r

r

r

r

r

r

and

∫ θ θ θ=
Σ

B u s g s s( , ) div ( , )d d

then, taking the supremum over all Ω∈G C ( )c
1 with ⩽∞G C 1, we have that

Ω=B C V u· ( , ). Similarly, for all Σ∈ ( )g C ( )c
1 2

with ⩽∞g 1, we conclude that

Σ π Ω⩽ + < ∞V u r V u( , ) (1 ) ( , ) .

Therefore, Σ∈u BV ( ) and the variation coincides with the total variation ΣD u| ( ) |( ). By
the corresponding norm defined on the BV space and equation (2.4), we deduce that

π⩽ +Σ Ωu r u(1 ) .BV BV( ) ( )

□

2.2. Existence and uniqueness

Next, we show existence and uniqueness of the minimizer for the problem (2.1).
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Theorem 2.2. Let α > 0, β ⩾ 0 and Σ∈ ∞g L ( ) a strictly positive function. Then the
functional F(u) in (2.1) is lower semicontinuous and strictly convex and the minimization
problem (2.1) attains a unique solution ∩Ω Ω∈ +u BV L( ) ( )1 .

Proof. Let Ω∈u BV( ) ( )n n be a minimizing sequence of non-negative functions, then in
particular there exists a constant >C 01 such that

∫α Ω β Σ= + +
−

<
Σ

 
( ) ( )

F u Du D u
g u

g
C( ) ( ) ( )

1

2
. (2.7)n n

n
2

1

Let ∫=
Ω Ωu u xdn n
1

| |
, then by the Poincaré–Wirtinger inequality [2], we can find a constant

>C 02 such that

Ω− ⩽Ωu u C Du ( ). (2.8)n n L n( ) 22

Therefore

∫Ω⩽ +Ω Ω
u C Du u x( ) d .n L n n( ) 22

Following the proof of [35], we set = −v u un n n and since

∫⩾
−

⩾ −
Σ Σ

Σ
∞

 ( )
C

g u

g g
g u

1n

L
n L1

2

( )
( )

2
2

one can prove that

⩽ + +

⩽ +͠
Σ Σ Σ Σ

Σ Σ

∞

∞

 


u C g v g

C g v

n L L n L L

L n L

( ) 1 ( ) ( ) ( )

1 ( ) ( )

2 2 2

2

and

∫Ω
χ =

Ω Ω Σ Σ u x u
1

d ·n L n L( ) ( ).2 2

Without loss of generality, we may assume that the image domain Ω is a unit square, then
χ ≠Ω 0, see [26, chapter 8] and we conclude that ∫Ω u dx| |n is uniformly bounded. Hence, un

is ΩL ( )1 bounded ( ΩL ( )2 bounded with Ω < ∞| | ). Moreover, since the Radon transform is L2

continuous for functions with compact support (see [20, 24]) and using (2.4), we have the
following:

Since, ∈u( )n n is bounded in ΩL ( )1 and Ω < ∞Du| |( )n i.e., is ΩBV ( ) bounded, we obtain

a subsequence  Ω∈∈u u BV( ) , ( )n kk such that unk converges weakly* to u. Also, unk

converges weakly to u in ΩL ( )2 . Then,

Σ→ u u Lin ( ) (2.9)n
1

k

Σ⇀ u u Lin ( ). (2.10)n
2

k

Then,

Σ Σ⩽ →∞ ( )D u D u( ) ( ) lim inf ( )k nk
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and the weak lower semicontinuity of the L2 norm and the lower semicontinuity of total
variation semi-norm for both the image and the projection space imply that

⩽
→∞

F u F u( ) lim inf ( ).
k

nk

To prove uniqueness let Ω⩽ ∈u u BV0 , ( )1 2 be two minimizers. If ≠ u u1 2, then the
strict convexity of the weighted L2 fidelity term together with the convexity of the total
variation of u implies that:

⎜ ⎟
⎛
⎝

⎞
⎠

+
< + =

Ω∈
⩾

F
u u F u F u

F u
2

( )

2

( )

2
inf ( )

u BV
u

1 2 1 2

( )
0 a.e.

which is a contradiction. Hence, = u u1 2 and using the well-known Slice-Projection
theorem i.e.,

π θ=θ
−  ( )u s u s( ) (2 ) ( ( )),

n
n

1
2

where the right-hand side denotes the n-dimensional Fourier transform, we conclude that
=u u1 2, see also [23, 24] for more details. □

2.3. Stability

Further, we discuss the stability of problem (2.1) in terms of a small perturbation on the data.
Following the approach of Acar and Vogel in [1], we consider a perturbation on the projection
space i.e.,

τ τ= + →Σg g with 0 (2.11)n n n L ( )2

and define the corresponding minimization problem on the perturbed functionals:

⎫
⎬⎪
⎭⎪

∫

α Ω β Σ= +

+
−

Ω

Σ

⩾ ∈



{

( )

F u Du D u

g u

g

( ) ( ) ( ) ( )

1

2
. (2.12)

u u BV
n

n

n

arg min

0 a.e, ( )

2

For (2.12) to be well-defined we assume an ∞L bound on τn such that gn is still positive. More
precisely we assume that

θ ε< ⩽ ⩽ + ⩾Σ∞c g s g n0 ( , ) , for all 1, (2.13)n L1 ( )

which is the same as assuming that the perturbations τn are bounded from above by a small
enough constant. Then, from the previous section, we have that both Fn and F are lower
semicontinuous, strictly convex with unique minimizers un and u

* respectively. In a sense, we
will prove that for a small change on our data g, our solutionʼs behaviour does not change
significantly. Before, we proceed with the stability analysis we need to ensure that the
functional is indeed BV-coercive.

That is coercive with respect to the bounded variation norm
Ω= +Ω Ωu u Du| |( )BV L( ) ( )1 , rather than the total variation semi-norm only.

Lemma 2.1. Let Σ∈ ∞g L ( ) a strictly positive and bounded function, then the functional F
in (2.1) is BV coercive i.e., there exists a constant >C 0 such that
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⩾ ΩF u C u( ) . (2.14)BV( )

Proof. Let ⩾u 0 a.e with Ω∈u BV ( ) and consider = −v u u . Then, by Hölder and
Poincaré inequalities, one can prove that

Ω⩽Ωv C Dv ( )L ( ) 1p

and the corresponding estimate for the BV norm holds:

Ω⩽ + +Ω Ω ( )u u C Dv1 ( ). (2.15)BV L( ) ( ) 11

Note that in the above calculations we have used the fact that Ω Ω=Du Dv| |( ) | |( ). Moreover,
we know that there exists a constant >C 02 such that

=Σ Ωu C u
L L( ) 2 ( )2 1

since χ ≠Ω 0 (see proof of theorem 2.2). Hence, we can derive the following bound:

α Ω

Ω

⩾ +

− +

Ω

Σ
Ω

Σ

∞

∞

(
)( )

F u Dv
C u

g
C u

C Dv g

( ) ( )
2

2 ( ) . (2.16)

L

L
L

L

2 ( )

( )
2 ( )

1 ( )

1

1

Setting

Ω= − +Ω Σ∞( )A C u C Dv g2 ( )
L L2 ( ) 1 ( )1

we consider two cases:

(a) If ⩾A 1, then using (2.15), (2.16), one can prove that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α

+
+ ⩾

Σ
Ω

∞

F u
C g

C
u( )

1 2
(2.17)

L
BV

1 ( )

2
( )

(b) If ⩽A 1, then

⩽
+ +

Ω

Ω∞( )
u

C Dv g

C

1 2

L

L

( )

1 ( )

2
1

and using equation (2.15) we derive that:

⎛
⎝⎜

⎞
⎠⎟ α

−
+

⩽ + + ⩽Ω
Σ 

u
g

C

C

C
C Dv

K
F u

1 2 2
1 ( ), (2.18)BV

L
( )

( )

2

1

2
1

2

where = + +
K C 1C

C

2
1

1

2
. From equations (2.17), (2.18) we have that the functional F, is

BV coercive. □

Moreover, we can prove that given constants >C 0 and ε > 0, there exists ∈n0 such
that

ϵ− ⩽ ⩾ ⩽ΩF u F u n n u C( ) ( ) for and . (2.19)n
BV0 ( )
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Indeed,

τ

τ τ

τ τ

− = + − − −

⩽ + −

⩽ + +

Σ Σ

Σ

Σ Σ Σ Σ

 





( )
( )

( )

F u F u
c

g u g u

c
g u

c
g u

( ) ( )
1

2
1

2
2 ,

1

2
2 2 .

n
n L L

n L n

n L n L L L

1
( )

2
( )

2

1
( )

2

1
( ) ( ) ( ) ( )

2 2

2

2 2 2 2

The continuity of Radon transform in L2 for functions with compact support, i.e.,

⩽ − −u S r u(2 )
L

n n
L

2 1 1 2
2 2

and BV↪ L2 continuously, imply that we can find an appropriate constant such that (2.19) is
valid.

With these preparations we can prove the following weak stability result for minimizers
of (2.1).

Theorem 2.3. Let Ω< ∈u u BV0 , * ( )n be the minimizers of the functionals Fn and F
defined in (2.12) and (2.1) respectively. Then

⇀u u L* in . (2.20)n
2

Proof. Observe that ⩽F u F u( ) ( *)n
n

n and using (2.19) we have that

⩽ ⩽ < ∞
→∞ →∞

( )F u F u F ulim inf ( ) lim sup ( ) *
n

n
n

n

n
n

lemma 2.1 implies that ∈u( )n n is BV bounded. Assume that (2.20) is not true, then there

exists a subsequence unk which converges weakly to some ≠u u* in L2. Hence,

⩽

= − +

⩽

→∞

→∞ →∞

( )
( )

F u F u

F u F u F u

F u

( ) lim inf ( )

lim ( ) ( ) lim inf ( )

*

n
n

k

n
n n

k

n
n

k

k
k k

k
k

which is a contradiction to the uniqueness of minimizer of F. □

2.4. Error analysis using the Bregman distance

In the following we discuss a similar approach as presented in [12] for deriving an error
estimate for our model (2.1) in terms of the Bregman distance. Let us note that what follows
holds for the more general minimization problem

⎧⎨⎩
⎫⎬⎭∫α β= + + −

Σ∈
 

F u J u J u
g u

g
arg min ( ) ( ) ( )

1

2

( )
, (2.21)

u X

2

where →J X: is a convex functional and X is a Banach space such that
∩Σ→ X L X: ( )2 is a bounded operator. Before we proceed with proving an error
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estimate for (2.21), we first recall the terminology of a minimizing solution, the source-
condition and the Bregman distance for a convex functional.

Definition 2.1. An element ∈∼u X is called a minimizing solution of =u g with respect to
the functional →J X: if:

(i) =∼u g
(ii) ⩽ ∀ ∈ =∼ J u J v v X v g( ) ( ) , , .

We consider the following source condition for an element ∼u

Σ∃ ∈ ∈ ∂ ∼∼ ∼ ( )w L w J u( ) such that * , (2.22)2

where ∂J u( ) is the subdifferential of J at u, see [16].
Next, we recall the Bregman distance for a convex functional J together with some of its

basic properties as it was introduced in [9].

Definition 2.2. Let ∈u v X, and →J X: convex functional, then the Bregman distance
related to J, with < ∞J u( ) , for all ∈u X is

= − − − ∈ ∂D u v J u J v p u v p J v( , ) : ( ) ( ) , , ( ). (2.23)J
p

Now, we can derive an estimate for the difference of a minimizing solution ∼u in definition
2.1 and a regularized solution u of (2.21).

Let α β> ⩾0, 0 and the data g fulfil (2.2). Then, for a minimizer u of (2.21) and the
exact solution ∼u satisfying =∼u f with a fixed noise bound δ− ⩽Σg f L ( )2 from the exact
data f, we have

α β α β δ

α α β

β δ

+ +
−

⩽ + + ⇔

+ < − > +

+ < − > +
−

⩽

∼ ∼

∼ ∼

Σ

∞

∞

 


  




  


 

( ) ( ) ( ) ( )

( ) ( )

J u J u
g u

g
J u J u

c

D u u p u u D u f

p u f
g u

g c

2 2

, , ,

,
2 2

,

L

J
p

J
p

L

2

2
2

1

1

2
2

2

( )

2

1

1 2

where, we have used the corresponding Bregman distances related to the functional J
regarding the image and the sinogram regularization. Moreover, we require that

∂ + = ∂ + ∂ J u J u J u J u( ( ) ( )) ( ) ( ( )) (2.24)

holds, subject to the assumption that the related effective domains have a common point, that
is

∩ ≠ ∅ ∈J u J u u Xdom ( ) dom ( ) for some (2.25)

In our case, this is valid due to theorem 2.1. Let

(i) ∈ ∂ ∼p J u( )1

(ii) ∈ ∂ = ∂ ∈∼ ∼   p J u J u w( ( )) *( ( )) *2 2.
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Moreover, assume that the source condition (2.22) is satisfied with respect to J, that is

Σ∃ ∈ ∂ = ∈∼ ( )p J u p w w Ls.t * , ( ).1 1 1 1
2

Then, by generalized Youngʼs inequality, for every ε > 0 we have

ε
ε⩽ +ab

a b

2 2

2 2

and we conclude that

α β α β δ

α β δ α β

α β δ α β

ε

ε εδ

+ + < + − > +
−

⩽ ⇔

+ +
−

⩽ + < +

− + − > ⇔

+ +
−

⩽ +
+

+ − + ⇔

∼

∼

∼

Σ

Σ

Σ

∞

∞

∞

  


 




 




  

 



 



( ) ( )

( ) ( )

( ) ( )

D u u D u f w p u f
g u

g c

D u u D u f
g u

g c
w p

f u g g

D u u D u f
g u

g c

w p

g u

, , ,
2 2

, ,
2 2

,

, ,
2 2

2 2
.

J
p

J
p

L

J
p

J
p

L

J
p

J
p

L

1 2
2

2

( )

2

1

2

2

( )

2

1
1 2

2

2

( )

2

1

1 2 2

2

2

2
2

1 2

1 2

1 2

Hence, for ε = >Σ
−

∞g 0L ( )
1 we have

β
α

δ
α

α β
α

+ ⩽ + +∼
∼

Σ∞  ( ) ( )D u u D u f
c

g w w, , * .J
p

J
p

L
1

2

( ) 1 2
2

2
1 2

We have proved the following theorem:

Theorem 2.4. Let δ > 0 be the noise bound related to the exact data f and the noise data g.
Moreover let (2.24) hold. If u is a minimizer of (2.21) and ∼u the exact solution of =∼u f
which satisfies the source condition (2.22), then for α β> ⩾0, 0 we have the following
estimate:

β
α

δ
α

α β
α

+ ⩽ + +∼
∼

Σ∞  ( ) ( )D u u D u f
c

g w w, , * , (2.26)J
p

J
p

L
1

2

( ) 1 2
2

2
1 2

where =∼ + Σ

Σ

∞

∞
c

c g

c g1 2

L

L

1 ( )

1 ( )
.

For β = 0 theorem 2.4 recovers the same estimates presented in [6, theorems 1]. In the

case β > 0 the additional term  w* 2, due to the source condition for total variation reg-
ularization on the sinogram, might give room for further improvement. It is a matter of future
research to improve the estimate in (2.26), where we believe that in certain cases the term
related to the sinogram regularization produces a better bound compared to no penalization on
the projection space.

2.5. An explicit example of TV regularization on the sinogram

Before we continue with the numerical presentation, we discuss how a regularized solution in
the projection space behaves in terms of an appropriate positive parameter β. In particular, we
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derive an explicit solution of the weighted ROF minimization problem for the sinogram

⎧⎨⎩
⎫⎬⎭∫β Σ= + −

Σ⩾
J v Dv

g v

g
arg min ( ) ( )

1

2

( )
, (2.27)

v 0 a.e

2

where we consider,

⎧⎨⎩= + ⩽u x y x y r( , ) 1, if
0, otherwise (2.28)

2 2

⎪

⎪

⎧
⎨
⎩θ = = − <

θg s u s r s s r( , ) ( ) 2 , for
0, otherwise.

(2.29)
2 2

In figure 2(b), the given sinogram g and the corresponding regularized solution v of
(2.27) for β = 10 is shown. We make the following Ansatz for a solution of (2.27)

⎧
⎨⎪
⎩⎪

δ κ κ
κ=

= ⩽
< <v s

g s
g s s r( )

( ), for ,
( ), for ,

0, otherwise. (2.30)

Note that, since ∈ −g C r r( , ), a solution v of (2.27) is in −C r r( , ) and hence also in
−W r r( , )1,1 [13]. Therefore, ∫Σ = Σ Dv v x| |( ) | | d . Then, if we plug-in (2.30) in (2.27), we

obtain

⎪ ⎪

⎪ ⎪

⎧⎨⎩
⎫⎬⎭

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

∫

∫

β

β κ

+ −

= − + − +
−

−

Σ

κ

⩾

⩾

v
g v

g

r r s
v

r s
v s

arg min
1

2

( )

arg min 4 2
2

2 d

v

v

0 a.e
1

2

0 a.e

2 2

0

2 2
2

2 2

which can be simplified to

⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭κ β κ κ κ κ− − + −( )r r
r

arg min (4 3 ) 3 2 arcsin . (2.31)2 2 2 2

Numerically solving (2.31) under the constraint κ< < r0 | | , we obtain a value for κ that
we can substitute in (2.30) and find the corresponding value of our solution after the reg-
ularization. We solve (2.31) with MATLABʼs built-in routine fminbnd in κ ∈ r[0, ). In
figure 3, we present how the β parameter relates to the constant height value δ of the
computed regularized solution. Clearly, for small values of β, there is no significant effect of
the total variation regularization but as we increase β we have that δ decreases to zero, while κ
tends to r.

Before we apply the inverse Radon transform on (2.30) and find the corresponding
solution in the image space, we need to verify its optimality. The following theorem ensures
that the candidate solution (2.30) for the problem (2.27) is indeed optimal.

Theorem 2.5. The unique solution of the minimization problem (2.27) is defined by (2.30).
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Proof. The optimality condition on (2.27) implies that:

β Ω∈ ∂ ⇔ + − = ∈ ∂J u q
v g

g
q Du0 ( ) 0, ( ). (2.32)

We can characterize the subdifferential of total variation, see [7], as

Σ Σ Σ∂ = ∈ ⩽ =∞
∞{ }Du p p C p p v Du( ) div : ( ), 1, div , ( ) . (2.33)o

Therefore, in our case (2.32) becomes

β Σ′ + − = ∈p s
v s g s

g s
s( )

( ) ( )

( )
0, in (2.34)

with − ⩽ ⩽p s1 ( ) 1 and ∫ ∫′ = ′Σ Σp s v s v s( ) ( ) | ( )|. If v is either increasing or decreasing on an
interval Σ⊂I , then through integration by parts one obtains ′ = ′p s v s v s( ) ( ) | ( )| which
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0
-50 -40 -20 0 20 40 50

120

100

80

60

40
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0
-60 -40 -20 0 20 40 60

Sinogram

After w-ROF

-x x

A
δ

(a) (b)

Figure 2. The original sinogram g with r = 50.5, plotted at 45 degrees in (a) and the
regularized sinogram v with β = 10 in (b).
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0
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δ

Figure 3. The relation between the regularization parameter β and δ in (2.30), computed
using (2.31) for the example in figure 2. The parameter β varies from 0.001 to 55 with
step size 0.1.

Inverse Problems 30 (2014) 105003 M Burger et al

15



immediately implies that ′ =p 0 and v = g on I. However, when ≠v g on an interval Σ′ ⊂I ,
then ′ ≠p 0 which is true only if ′ =v s( ) 0 on ′I , i.e., v is constant.

For computing the regularized image that corresponds to a solution of (2.27) we first note
that the rotational symmetry of the object in image space allows to simplify the Radon
transform and its inverse. In this case the Radon transform coincides with the so-called Abel
transform, see [26, chapter 8]. More precisely, if u is a radial function and

= +( )u x y f x y( , ) 2 2 we have

∫=
−

θ
∞ u s

f r r

r s
r( ) 2

( )
d . (2.35)

s 2 2

Using (2.35), we can recover analytically the solution u for a regularized sino-
gram (2.30).

The Abel transform and the inverse Abel transform in this case are

∫=
−

∼
∼ ∼

∼
∼∞( ) ( )

( )u r x
ru r

r x
r( ) 2 d (2.36)

x 2 2

∫π
= −

−
∼

∼ ∼

∼∞

∼

( )( )
( )u r

r r

r u r x

x r
x

1 d

d

( )
d . (2.37)

r 2 2

Setting =∼u r( ) 1 and replacing the upper limit of the integral ∞ by r in (2.36), the
expression in (2.36) matches the expression for the Radon transform in (2.29). Therefore, we
plug-in (2.30) in (2.37) and focus on the constant part of the sinogram for κ κ− ⩽ ⩽∼r ,

∫π
δ δ

π
= −

−
=

−
∼

∼ ∼ ∼ ∼∼( )u r
r r

x

x r
x

r r

1 d

d
d . (2.38)

r

r

2 2 2 2

We observe that the reconstructed image is affected by the initial loss of contrast δ of the
sinogram regularization in (2.30) and depends radially on ∼r . In figure 4, we present the

Figure 4. The solution ∼u r( ) (solid line) given in (2.38) inside the interval − r r[ , ] and
zero outside. The black and the red curve constitute the regularized solution for a
smaller and larger value of β, respectively. The larger β the more the solution
concentrates around the boundaries of the disc.
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regularized solution u for two values of β. Recall, as we increase β (red curve), we have that
δ → 0 and κ → r .

3. Numerical implementation

In this section we discuss the numerical solution of the minimization problem (2.1). We
employ the split Bregman technique [19] which separates the problem into two subproblems
—one in image space and one in projection space—that are solved iteratively in an alternating
fashion. In order to present the numerical solution we start with formulating (2.1) in a discrete
setting.

3.1. Discrete setting

Let u( )i j, , = …i m1, , , = …j n1, , be the discretized image defined on a rectangular grid of
size m × n, >m n, 0, and v( )i j, , = …i k1, , , = …j l1, , the discretization for an element in
the sinogram space Σ π= × − r r[0, ) [ , ] where k denotes the number of lines and l the
number of angles. The values ui j, and vi j, are defined on two-dimensional grids. They are

rearranged into one-dimensional vectors ∈u nm and ∈v kl by appending the columns of
the array to each other, starting from the leftmost. Then, the discrete gradient for ∈ ×u m n is
a matrix ∈ × nm nm2 which is the standard forward difference approximation of the gradient
in the continuum. More precisely, applying the discrete gradient to u gives

= ∈  u u u(( ) , ( ) ) nm
1 2

2 with

⎧⎨⎩
⎧⎨⎩

=
+ − ⩽ ⩽ ⩽ <

⩽ ⩽ =

=
+ − ⩽ < ⩽ ⩽

= ⩽ ⩽





u i j
u i j u i j i n j m

i n j m

u i j
u i j u i j i n j m

i n j m

( ) ( , )
( , 1) ( , ), if 1 , 1 ,

0, if 1 , .

( ) ( , )
( 1, ) ( , ), if 1 , 1 ,

0, if , 1 .

1

2

The discrete divergence is defined as its adjoint, see [14], and is given by

 → = − z u z udiv: with div ( ) · · .nm nm2

Further, to approximate the Radon transform  we introduce the discrete Radon trans-
form as a mapping  →R: nm kl and its inverse  →−R : kl nm1 . In the numerical imple-
mentation the discrete Radon transform is represented by a sparse matrix ∈ ×R kl nm which
acts on ∈u nm to obtain a sinogram image ∈v kl. Defining θx s( , )i jˆ ˆ , = …i kˆ 1, , ,

= …j lˆ 1, , , the line defined by θ s,i jˆ ˆ, we can define for = …i m1, , and j = 1,… , n

⎪

⎪

⎧
⎨
⎩

ψ θ θ=( ) ( )s
x s i j

,
1, where the line , goes through the pixel ( , )

0, otherwise. (3.1)
i j i j

i j
, ˆ ˆ

ˆ ˆ

Using this notation and the linearity of the Radon transform, we define the discrete Radon
transform as

∑∑θ ψ θ=
= =

( ) ( )Ru s u s, , , (3.2)i j

i

m

j

n

i j i j i jˆ ˆ

1 1

, , ˆ ˆ

where ψ θ s( , )i j i j, ˆ ˆ is equal to the length of the intersection of the projection line with the
pixel (i,j).
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With these discrete quantities we define the discrete functional F by

∑β= + + −
 


F u a u Ru

g u

g
( ) ( )

1

2

( )
, (3.3)

k l

1 1

,

2

and the discrete version of the minimization problem (2.1)

∈ ×
F umin ( ). (3.4)

u m n

3.2. Split Bregman algorithm

To solve the problems defined in (3.3) we employ the Bregman iteration [25] combined with
a splitting technique. The resulting algorithm is called Split Bregman method which is pro-
posed in [19] to efficiently solve total variation and ℓ1 regularized image processing problems.
The idea of this splitting procedure is to replace a complex and costly minimization problem
by a sequence of simple and cheaply to solve minimization problems and to set up an iteration
in which they are solved alternatingly. Note, that the Split Bregman method can be
equivalently phrased in terms of an augmented Lagrange method and Douglas–Rachford
splitting, see [17, 32, 33].

We follow [19] to adapt the Split Bregman algorithm to the solution of (2.1). To do so,
we consider

∑α β+ + −
⩾

 u Ru
g Ru

g
min ( )

1

2

( )
. (3.5)

u u
k l

{ : 0 a.e.}
1 1

,

2

We start with replacing (3.5) by an equivalent constrained minimization problem for two
unknowns, the image ∈ ×u m n and the sinogram ∈ ×v k l, related to each other by =v Ru.
This gives

∑α β+ + − =
⩾

 u v
g v

g
v Rumin

1

2

( )
s.t . (3.6)

u v u
k l

{( , ): 0 a.e.}
1 1

,

2

For computational efficiency reasons, we introduce three additional variables

= = = ∼ z u w v u u, and (3.7)

and rephrase (3.6) again into

∑α β+ + −
⩾∼ ∼{ }( )

z w
g v

g
min

1

2

( )
. (3.8)

u u v z w u
k l

, , , , : 0 a.e., satisfying (3.7)
1 1

,

2

Then, we could iteratively solve the constrained minimization problem (3.8) by

Bregman iteration. Starting with initial conditions   ∈ ∈ ∈× × ×( ) ( )b b b, , ,k l k l m n
1
0

2
0 2

3
0 2

∈ ×b ( )m n
4
0 we iteratively solve for = …k 0, 1,
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⎧⎨⎩

⎫⎬⎭

∑α β ι

λ λ

λ λ

+ + − +

+ + − + + −

+ + − + + −

= + − = + −
= + − = + −

∼

∼

>

+ + + + + +

+ + + + + +

∼
∼













( )z w
g v

g

b u v b v w

b u z b u u

b b u v b b v w

b b u z b b u u
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with Lagrange multipliers λ >=( ) 0i i 1
4 , ∈ ×b k k l

1 , ∈ ×( )b k k l
2

2
, ∈ ×( )b k m n

3
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and

∈ ×b ( )k m n
4 and ι >∼u( 0) being the characteristic function for the positivity constraint on ∼u .

To progress, in each iteration above we would need to solve a minimization problem in all
∼u u v z w, , , , at the same time which is numerically very involved. Instead, we use the split

Bregman idea of [19] and in each iteration solve a sequence of decoupled problems in
∼u u v z w, , , , , that is
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This procedure leads to five minimization problems that have to be solved sequentially in
each iteration. Every one of them either has an explicit solution or involves the solution of a
linear system of equations that can be efficiently solved with an iterative method such as
conjugate gradient. We iterate until
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and take +vK 1 as the regularized sinogram and ∼ +u K 1 as the reconstructed image. Let us go into
more detail on the solution of each minimization problem. Solution of (3.9): to solve (3.9) we
derive the corresponding Euler–Lagrange equation for v and obtain a linear system of
equations with k l· unknowns = … = …v i k j l, 1, , , 1, ,i j, which reads

λ λ λ λ⇒ + − = + + + − ( ) ( )( )( )g g v g g b Ru g b w(39) 1 div · div (3.18)k k k k
1 2 1 1 2 2

The system (3.18) is solved by a conjugate gradient method. Solution of (3.10): the
Euler–Lagrange equation of (3.10) for u reads

λ λ λ

λ λ λ

⇒ − +

= − + − − − ∼+
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( ) ( ) ( )

R R u

R v b b z b u
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where R* is the adjoint of R, that is the discrete backprojection. As before, the system (3.19) is
solved by a conjugate gradient method. Solution of (3.11): the solution of (3.11) is given by

= +∼ + + +{ }u b umax , 0 .k k k1
4

1 1

Solution of (3.12) and (3.13): finally, the solution of the minimization problems (3.12), (3.13)
can be obtained exactly through soft shrinkage. That is,
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4. Numerical results

In this section, we present our results on both simulated and real PET data. The Radon matrix
that we described in (3.2) is fixed and produces sinograms of size 192 × 192, that is the
sinogram is given in 192 projection lines, 192° degrees with 1° degree incrementation and the
corresponding reconstructed image is of size 175 × 175 pixels. We corrupt the sinograms with
Poisson noise of different levels. In order to create noisy images corrupted by Poisson noise,
we apply the MATLAB routine imnoise (sinogram, poisson). MATLABʼs imnoise function
acts in the following way: for an image of double precision, the input pixel values are
interpreted as means of a Poisson distribution scaled by a factor of 10−12. For example, if an
input pixel has the value −5.5 * 10 12 then the corresponding output pixel will be generated
from a Poisson distribution with mean of 5.5 and afterwards scaled back to its original range
by 1012. The factor 1012 is fixed to represent the maximal number of detectable photons. Our
simulated sinograms are in [0, 1] intensity and in order to create different noise levels, we
have to rescale the initial sinogram with a suitable factor before applying imnoise and then
scale it back with the same factor, i.e., Noisy Sinogram =scale * imnoise ( )poisson,sinogram

scale
.
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To simulate realistic sinograms with higher noise level, we use 1013 as a scaling factor,
see for example figure 5. The real data was obtained from the hardware phantom ‘Wilhelm’, a
self-built phantom modelled of the human body. Beside the activity in the heart a small source
is placed in the phantom to simulate a lesion, see section 4.1 for more information.

Before presenting our results we give some specifics on how equations (3.9)-(3.13) are
solved and how parameters are chosen. Both linear systems (3.18) and (3.19) are solved using
MATLABʼs built-in function cg which performs a conjugate gradient method. As a stopping
criterium we either stop after at most 200 iterations or if the relative residual is smaller than
10−3. As it is observed in [19], it seems optimal to apply only a few steps of an iterative solver
for both subproblems (3.18) and (3.19) since the error in the split Bregman algorithm is
updated in every iteration.

The Lagrange multiplies λ =( )i i 1
4 in equations (3.9)–(3.13) in section 3.2 are chosen

following [18] to optimize convergence speed and well conditioning. They were fixed as
λ = 0.0011 , λ = 12 , and λ λ= = 1003 4 . Note that these parameters may affect the condition
number for both system matrices

λ λ λ

λ λ

= − +

= + −
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Figure 5. The phantom image includes two discs of radius =r 261 and =r 112 pixels.
Its sinogram has 192 angles and 192 rays with low and high noise.
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in (3.18) and (3.19) and hence the convergence rates of iterative solvers used to solve them
are affected by this choice.

Finally, we observe that after 150 Split Bregman iterations, there are no significant
changes in the reconstructed image and therefore we choose a stopping criteria of either at
most K = 400 iterations or we stop at iteration K where for the first time we have

−
<

∼ ∼

∼

+

+
−

u u

u
10 ,

K K

K

1
2

1
2

4

where ∼ +u K 1 the regularized image. To evaluate the quality of reconstructed images we choose
the signal-to-noise ratio (SNR) as a quality measure. The SNR is defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

− ∼SNR
u

u u
20 log , (4.1)2

2

where u and ∼u denote the ground truth and the reconstructed image, respectively. In what
follows, we first evaluate the proposed reconstruction technique (2.1) against pure total
variation regularization on the image (β = 0) for a synthetic image of two circles and for
different noise levels, as well as for a real data set acquired for the Wilhelm phantom.
Then, we numerically analyse the scale space properties of pure sinogram regularization,
that is for α = 0, which will be a motivation for the final section in which we discuss the
merit of the proposed reconstruction method for PET data that encodes thin image
structures.

4.1. Image reconstruction from corrupted simulated and real PET data

We start with a discussion of numerical results obtained for simulated PET data.
Figure 5 shows a simulated phantom of two discs with different radius and the corresponding
noiseless and noisy sinograms corrupted with low and high level Poisson noise as described
above.

First, we evaluate the proposed algorithm for reconstructing an image from the sino-
gram corrupted by low level Poisson noise with SNR = 18.5246, see figure 5(c). The
proposed reconstruction algorithm with joint total variation regularization of image and
sinogram (that is α β >, 0) is compared with the algorithm that uses pure total variation
regularization of the image (that is α > 0 and β = 0). Both reconstruction strategies are
tested for a range of parameters α β, and in each case the reconstruction is found which has
the highest SNR value. For β = 0 we computed the reconstructed image for
α = 3, 4, 5, 6, 7. The optimal reconstructed image in terms of the best SNR = 25.8589 is
obtained for α = 6, see figure 6. Then, we test the proposed reconstruction method
applying total variation regularization on both the image and the sinogram using the same
range of α = 3, 4, 5, 6, 7 and β = 0.001, 0.005, 0.01, 0.05. Here, the optimal recon-
struction was obtained for α = 6 and β = 0.001 with SNR = 25.3127, see figure 6. In table
1 a full list of tested parameters and SNRs for corresponding reconstructed images is given.
The results do not indicate a significant difference between the algorithm with and without
total variation regularization on the sinogram, both visually and also in terms of the SNR.
Indeed, in the low noise case additional total variation regularization on the sinogram
produces even slightly worse results in terms of SNR than using no regularization on the
sinogram at all.
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Figure 6. Low level noise: optimal reconstruction results of the two discs image with
sinogram shown in figure 5(c) with and without sinogram regularization and a
comparison of the line profiles for the two results.
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The TV regularization on the sinogram gains importance in the reconstruction algorithm
when the noise in the corruption of the sinogram is increased. The sinogram with high level
noise is shown in figure 5(d) and has SNR = 8.6814. We tested the proposed method for
α = 250, 275, 300, 325, 350 and β = 0, 0.001, 0.01, 0.05, 0.1. The results are reported in
table 2.

The highest SNR is obtained when α = 250 and β = 0.001, see figure 7(b). Although, it
is hard to distinguish any difference between the cases of β, we observe that the extra
penalization on the sinogram produces better results in terms of the SNR value, see figure 7.
The increase in SNR for β > 0 can be seen when comparing the middle line profiles of the
reconstructed images with and without sinogram regularization in figure 7(c).

As a second example for our evaluation of the algorithm for PET reconstruction we
consider real PET data obtained from scanning a self-built phantom of a human breast with a
small source which simulates a lesion, compare figure 8(a). The data has been acquired with a
Siemens Biograph Sensation 16 PET/CT scanner (Siemens Medical Solutions) located at the
University Hospital in Münster. From the 3D PET data we used only one sinogram slice.
The 2D sinogram dimension is 192 × 192 with a pixel size of 3.375 mm2. The size
of the reconstructed image is 175 × 175, covering a field of view of 590.625 mm in diameter.
The 2D slice of the noisy sinogram which has been used in our computations is shown in
figure 8(b). Reconstructions obtained from the proposed algorithm, with and without sino-
gram regularization, are shown in figure 9. The additional regularization of the sinogram
seems to allow for smoother image structures (such as the boundary of the red lesion) and
results in a slight reduction of the stair casing effect of total variation regularization.

In the following two sections we will aim to improve our understanding of this new
sinogram regularization, taking the analytic solution of section 2.5 as a starting point. A
thorough numerical discussion of this example in section 4.2 leeds us to section 4.3 where the

Table 1. Low level noise for simulated example in figure 5: SNRs of reconstructed
images for different combinations of α and β values.

β

0 0.001 0.005 0.01 0.05 0.1

α 3 24.0819 22.0172 22.4415 22.8894 23.2414 21.6533
4 25.3682 24.0926 24.2951 24.4801 23.6303 21.9382
5 25.7867 25.0829 25.0779 25.0469 23.9432 22.0367
6 25.8589 25.3127 24.7787 25.0602 24.0095 22.1034
7 25.7436 24.8499 24.8278 25.0148 23.9662 22.2289

Table 2. High level noise for simulated example in figure 5: SNRs of reconstructed
images for different combinations of α and β values.

β

0 0.001 0.005 0.01 0.05 0.1

α 250 10.9544 10.9665 10.9557 10.9464 10.8531 10.8058
275 10.9502 10.9599 10.9501 10.9381 10.8595 10.8013
300 10.9425 10.9543 10.9415 10.9257 10.8267 10.7777
325 10.9167 10.9551 10.9434 10.9283 10.8101 10.7293
350 10.8784 10.9289 10.9165 10.9014 10.7946 10.7104
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Figure 7. High level noise for simulated example in figure 5: best SNRs with/without
total variation regularization on the sinogram and the middle line profiles of the
reconstructed images.
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benefits of total variation regularization of the sinogram for the reconstruction of thin objects
are discussed.

4.2. Scale space of sinogram regularization

Following up on the computations in section 2.5, we now discuss how the regularization on
the sinogram effects the backprojected image. Let us recall that every point θ s( , ) on the
sinogram corresponds to a line θ θ= +s x ycos sin that passes through a point (x,y) on the
image, with a distance s from the origin and normal to the direction θ θcos( , sin ). Moreover
(compare Thirion [34]), every point on an edge in the sinogram corresponds to a line in the
object space which is tangent to the boundary of the object. To further understand how
sinogram regularization acts, we consider the effect of the regularization when reconstructing
an image from simulated noise-free Radon data. To this end we set α = 0, regularize the
noise-free sinogram with different values of β, and apply FBP to the regularized sinogram to
obtain the corresponding reconstructed image. We call the set of reconstructed images from
regularized sinograms with varying β regularization, the scale space of total variation reg-
ularization of the sinogram.

Figure 8. Real PET data.
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Considering the reconstruction method (2.1) for α = 0 results in the following weighted
total variation denoising problem for the sinogram g

∑β
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+ −
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g v

g

arg min

0 a.e

( )
, (4.2)
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1 norm as defined before. Similar to before, we solve (4.2) by a Split

Bregman technique, introducing two more variables = w v and =∼v v. Then, starting with
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Figure 9. Real data: best TV regularized reconstructions for noisy slice in figure 8(b).
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Note that, as before, in the solution of (3.19) a simple backprojection of the sinogram is
used and we set λ λ= = 11 2 . Moreover, since we do not apply any positivity constraint on the
image as it is done in the full algorithm used in section 4.1, we might observe small negative
values in the reconstructed images presented in the following.

Figure 10. Sinogram regularization with different values of β (first row) and the
corresponding filtered backprojected images (third row). The second row represents a
45o comparison of the original sinogram and the sinogram after regularization. The
highest value of the sinogram is 102.8. The fourth row represents the middle line
profiles of the reconstructed images in the third row.

Inverse Problems 30 (2014) 105003 M Burger et al

28



First, we consider image functions with radial symmetry such as in section 2.5
equation (2.30). Figure 10 shows the numerically computed regularized sinograms and cor-
responding images for an original image of a disc with radius r = 50.5. Here we have used
MATLABʼs built-in function iRadon with a Ram-Lak filter and spline interpolation to
compute the FBP of the regularized sinogram. Moreover, table 3 , shows the correspondence
of the numerical solution with the analytic solution in section 2.5 for three discs of radii

=r 15.5, 30.5 and 50.5. Here, δan and δnum denote the analytic and numerical δ, respectively,
in the expression of the regularized solution in (2.30). As predicted from the computations in
section 2.5, we see that with increasing regularization parameter β the regularized image more
and more emphasizes the boundary of the disc.

Going beyond radial symmetry we consider three additional examples where the sino-
gram depends on the angle θ. First, we simply consider the image that we used in the previous
section in figure 5 without adding additional noise to its sinogram. The effect of β regular-
ization in this case is presented in figure 11. We see that as we increase β we loose details
in the image, starting again from the inner structure of the discs, while enhancing the
boundaries of the objects. Here, the connection of the choice of β with the radius of every
circle is clearly visible. More precisely, for β < r2 the boundary of the smaller circle is
enhanced and for β< <r r2 1 the small circle is lost and the boundary of the larger circle is
enhanced.

In figure 12, we present two more test images. The first one is an image of two rings with
the same outer radius but with different annulus regions, compare figure 12(a). A similar
scale-space analysis as for the previous examples is carried out in figure 13. Additionally to
the enhancement of the outer boundaries of the two rings we see that for increasing β
regularization the reconstructed image approaches the convex hull of the two rings. This is
even more apparent for the last example of a star-shaped object in figure 12(c). See figure 14,
in particular.

The conclusion of this section is the motivation for the next section at the same time.
Analysing the effect of total variation regularization on the sinogram by considering its scale
space and its effect on the reconstructed image we have seen in figures 10–14 the potential
use of this method for the enhancement and detection of object boundaries. As we will see in

Table 3. Comparison of analytic and numerical computations of sinogram
regularization for three test images of characteristic functions of circles with radii

=r 15.5, 30.5 and 50.5. The parameters δan and δnum denote the analytic and
numerical δ, respectively, in the expression of the regularized solution in (2.30).
Compare also figure 10 for regularized reconstructions for the circle with
radius r = 50.5.

r = 15.5 β 10−3 0.1 1 5 10 15 15.5
δan 30.94 29.88 25.84 16.09 7.59 0.64 0.084
δnum 31.32 29.76 25.71 15.96 7.37 0.67 0.37

r = 30.5 β 10−3 1 10 15 20 25 30.5
δan 60.93 59.6 31.35 22.37 14.46 7.27 0.09
δnum 61.98 54.58 31.42 22.47 14.55 7.34 0.65

r = 50.5 β 10−3 1 10 20 30 45 50.5
δan 100.92 93.33 65.74 45.46 28.71 7.16 0.12
δnum 101.83 93.26 65.75 45.41 28.82 7.24 0.68
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Figure 11. Sinogram regularization with different values of β and the corresponding
filtered backprojected images using MATLABʼs iRadon built-in function. The radii for
the discs are =r 131 and =r 5.52 .
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the next section, this effect can be exploited for enhancing thin structures in images obtained
from Radon measurements.

4.3. Thin structure reconstruction

In what follows, we discuss how total variation regularization of the sinogram can improve
the quality of the reconstruction in comparison with pure total variation regularization of the
image in the presence of thin structures in the image. Our first example is a thin rectangular
frame in figure 15. Similarly as in section 4.1, we start by finding an optimal value of α with
β = 0, in terms of SNR. Then, we select a range of α values close to this optimal one and we
allow strictly positive values for β. The noise that is added on the sinogram, is generated by
MATLABʼs imnoise routine, with a 1012 scaling factor, see the beginning of section 4 for
more explanation. The test image that is shown in figure 15 has 50 pixels width and 100
pixels length and the rectangular frame has a width of 2 pixels. In figure 16, we first present
some of the results obtained with pure total variation regularization on the image, that is when
β = 0. As we increase the α parameter, we observe that the best SNR corresponds to α = 5
with SNR = 19.9764.
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Figure 12. Two rings with different annulus regions and its sinogram ((a) and (b)), star-
shaped image of five points and its sinogram ((c) and (d)).
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Figure 13. Two rings with different annulus regions: the outer radius for both rings is
r = 25.5 and the inner radii are =r 211 and =r 112 . For figures (a)–(d), we present the
sinogram regularization for increasing values of β with the corresponding filtered
backprojected using MATLABʼs iRadon built-in function.

Figure 14. Star-shaped image of five corners: in figures (a)–(d), we present the
sinogram regularization for increasing values of β with the corresponding filtered
backprojected image using MATLABʼs built-in function iRadon.
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That is because for small values of α we observe that the large-scale structure of the
object is still intact, with the cost that noise is still present in the reconstructed image, see
figures 16(a)–(c). However, with higher values of α noise is further eliminated but at the
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Figure 15. A thin rectangle of 50 pixels width and 100 pixels length with 2 pixels
length on the boundaries. The corresponding noiseless and noisy sinograms with 1012

scaling factor in imnoise.
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expense of a significant loss of contrast and some unpleasant artifacts along the boundaries of
the frame, see figures 16(d)–(f).

If we switch on total variation regularization on the sinogram, that is taking β > 0, we
obtain results which are greatly improved both in terms of the SNR of the reconstructed
images but also—visually—in terms of finding the right balance of eliminating the noise and
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Figure 16. Thin rectangle: reconstruction without total variation regularization on the
sinogram and different parameters of α.
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accurately preserving the thin structures, see table 4 and figure 17. This observation is
confirmed by a second example of an image of two thin straight lines which cross, compare
figure 18. The width of the thin lines is 3 pixels. The length of the horizontal line is 121 pixels
and of the vertical line is 100 pixels. The noise, added on the sinogram, is generated with the
same scaling factor of 1012 as before. Again, we observe that for positive values of β, we
obtain much better reconstructions with almost all noise eliminated while keeping the
boundaries of the thin structures intact, see figure 19.

We also apply our method to a more realistic PET phantom for visualizing activity of the
human heart. The XCAT phantom is a 3D phantom. For our purpose we used one z-slice
through the centre of the phantom which represents a transverse plane view of the human
body, see figure 20 . In particular, we can see the activity of the heart through the myo-
cardium (the muscle surrounding the heart) in red. We focus on regions where thin structures
are observed, see figures 21(a)-(b) and add the usual level of Poisson noise to their corre-
sponding sinograms, see figures 21(c)-(d). In figures 22(a)–(d) we present our best recon-
structions for these two different data-regions in terms of the SNR values for both cases of
with and without sinogram regularization. It is obvious that the best reconstructions are
achieved when there is no regularization on the sinogram. That is because for increasing
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Figure 17. Thin rectangle: best reconstructions with and without total variation
regularization on the sinogram as reported in table 4.

Table 4. Thin rectangle: SNR with β ⩾ 0.

β

0 0.005 0.01 0.05 0.1

α 2 17.6798 18.0078 19.7238 24.5981 24.2978
3 18.6444 18.9855 20.6460 23.9028 24.2647
4 19.4269 19.7539 21.5305 23.9178 23.2860
5 19.9764 20.2979 21.7962 23.6466 22.8525
6 20.2583 20.5771 21.9057 23.2213 22.3440
7 20.4471 20.8665 21.8372 22.7554 21.8147
8 20.3511 20.3276 20.9859 22.2391 21.2477
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Figure 18. Test image of two thin crossing lines and its noiseless and noisy sinograms,
respectively.
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values of β a smoothing on the originally blocky boundaries is enforced and hence the SNR
value is reduced. Indeed, as we show in the following experiments this is only true if the

Figure 20. XCAT phantom.

Figure 21. Selected regions of the XCAT phantom with the corresponding noisy
sinograms.
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initial data that we start our experiments with is of low resolution and the thin structures have
blocky instead of smooth boundaries. If we change our experiment to the consideration of a
high resolution version of the XCAT phantom with thin structures as in figures 21(a)–(b) but
with medically more realistic smooth boundaries, the positive effect of the TV sinogram
regularization can be observed. As it is expected, regularizing only on the image space
creates a rather unpleasant staircasing effect along the boundaries which is clearly eliminated
when we combine the regularization on both spaces, see figure 24. Indeed, a significant
increase of the SNR when turning on the TV regularization on the sinogram (β > 0) can be
observed.

5. Conclusion

We present a combined approach of total variation regularization of both the image and
the sinogram for PET reconstruction. We prove existence, uniqueness and stability results
for our proposed model with an additional error analysis through Bregman distance. Our

Figure 22. Reconstructions with and without total variation regularization on the details
of the XCAT sinogram in figure 21.
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explicit reconstruction of total variation regularization, directly on the sinogram space, pro-
vides us with a new insight on how PET reconstruction could be improved and in which
cases.

We compute an optimal solution of the weighted-ROF model for a sinogram of disc in R2

and find analytically the corresponding solution on the image space via the Radon transform.
The weighted L2 fidelity behaves as an approximation of the Poisson noise model given by
the Kullback–Leibler divergence and allows us to find a crucial relation between the reg-
ularizing parameter β and the support of our object. This connection could be verified
numerically when appropriate values of β are chosen to be close to the radius r and tend to
approximate the boundaries or the convex hull of the reconstructed object. Hence, a combined
penalization on both the image and the sinogram space leads us to an enhancement and
detection of object boundaries, specifically for images where thin structures are present.

In real PET data thin structures will only make up parts of the image which will in
general consist of small and larger scale objects as well as background. Our experiments for
the cropped thin structures of the XCAT phantom in figure 20 suggest TV regularization on a
targeted local Radon transform instead of the full Radon transform that allows to increase the
regularization on the sinogram in regions with thin structures.

Figure 23. High resolution XCAT: smooth versions of figures 21(a)–(b) and their noisy
sinograms.
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